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NUMERICAL SOLUTION OF SOME STEADY STATE CONVECTION- 

DIFFUSION AND IMPACT PROBLEMS 

 

ABSTRACT 

                                                                                                                                                                         

 In this thesis, we consider numerical solution of some steady state convection-

diffusion and impact problems that deal with the fluid flow problems involving large 

Reynolds number and the non-linear wave prorogation in the case of impact problem.  In 

the impact problem we have focused on longitudinal, one-dimensional wave propagation.   

Convection-diffusion problems and impact problem have their commonality in one aspect 

that both of them are convection-diffusion in nature.  Convection diffusion problems 

form a class of Singular perturbation problems. The numerical treatment of these 

perturbation problems   is far from trivial in view of the boundary layer behavior of the 

solutions.  In a singular perturbation problem there arises a governing differential 

equation whose highest order derivative is multiplied by a perturbation parameterε .   The 

study of numerical solution of singular perturbation problems has attracted researchers in 

numerical analysis in view of the ever increasing efficiency of the high speed computers. 

The thesis is divided into five parts and consists of nine chapters.  

 Part-I consists of a single Chapter which is introductory in nature.  In this Chapter 

we introduce the steady state convection-diffusion and impact problems and present a 

review of existing literature on the problems related to the thesis. 

 Part II deals with the steady state convection- diffusion problems which are 

solved by applying various numerical methods.  It consists of four chapters 2, 3, 4 and 5. 

In Chapter 2, we present a computational method to solve steady state convection – 

diffusion problem.  In Chapter 3, we deal with a uniformly convergent scheme for 

convection –diffusion problem. Chapter 4 is devoted to the application of finite element 

method to solve Singularly perturbed two point boundary value problems using cubic B- 

splines. Chapter-5 is devoted to study of a numerical integration method for solving 

general steady-state convection-diffusion problems. 
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 Part-III deals with the Artificial-diffusion convection problem and two 

dimensional convection-diffusion problems. It consists of two chapters, chapter 6 and 7.  

Chapter 6 deal with a convection-diffusion problem in one-dimension with variable co-

efficients wherein an artificial –diffusion  term is present.  In chapter-7 we present a 

numerical study of convection –diffusion problem in two- dimensional space.  

 Part IV consists of a single Chapter, Chapter 8.    This chapter aims to study the 

numerical study of wave propagation in a non-linear medium due to impact. The problem 

studied in this part is analogous to those studied in the previous part. It reveals the non-

linear wave propagation and possesses convection nature. Non-linear equation is reduced 

to linear by applying quasi-linearization technique. 

In all the above problems, numerical methods are used and the analytical 

solutions are obtained wherever possible.  In the numerical methods most of the part in 

the thesis finite difference methods are employed. In chapter-4 we employed finite 

element method to attain the reasonable accuracy.  In a nut-shell the numerical methods 

presented in this thesis for solving convection-diffusion problems in differential 

equations have been shown to be accurate and efficient over the conventional methods.   

Above all, these methods are conceptually simple, easy to use and are readily adaptable 

for computer implementation with a modest amount of modeling the problem. 
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INTRODUCTION 

 

 The present thesis entitled NUMERICAL SOLUTION OF SOME STEADY 

STATE CONVECTION- DIFFUSION AND IMPACT PROBLEMS deals with the fluid 

flow problems involving large Reynolds number and the non-linear wave prorogation in the 

case of an impact problem. Convection-diffusion problems and impact problem have their 

commonality in one aspect that both of them are convection-diffusion in nature.  Convection 

diffusion problems form a class of Singular perturbation problems. The numerical treatment 

of these perturbation problems   is far from trivial in view of the boundary layer behavior of 

the solutions.  In a singular perturbation problem there arises a governing differential 

equation whose highest derivative is multiplied by a perturbation parameterε .   The study of 

numerical solution of singular perturbation problems has attracted researchers in numerical 

analysis in view of the ever increasing efficiency of the high speed computers.  The present 

study is motivated mainly by the study of Stynes [66] who dealt with problems of this nature 

and highlighted the notion of ‘artificial diffusion’. 

 In the existing literature, this is one of the highly fertile fields which is receiving 

attention that it richly deserves. Perhaps the most common source of convection-diffusion 

problems is due to the Navier – Stokes equations which are highly nonlinear when   Reynolds 

number is large.  Morton, in his classic treatise [40], pointed out that this is by no means the 

only place where they arise and listed ten examples involving convection-diffusion equations 

starting from the drift-diffusion equations of semiconductor device modeling to the Black–

Scholes equation that arises in financial modeling.  He also observed that accurate modeling 

of the interaction   between convective and diffusive processes is ‘the most ubiquitous and 

challenging task’ in the numerical approximation of partial differential equations.     

Convection-diffusion problems occur very frequently in the fields of science and 

engineering such as fluid dynamics, specifically the fluid flow problems involving large 

Reynolds number, problems in mass and heat transfer and problems dealing with chemical 

reactions. 

A problem which we shall be referring to as impact problem is also discussed in the thesis in 

view of its commonality with the other problems studied in the thesis.  In the impact 

problem, a non-linear convection-diffusion problem is studied. When two objects with 
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distinct velocities come into contact with one another, an impact occurs and wave 

propagation occurs in the collided bodies. The nonlinear wave propagation that occurs as a 

result of the impact is modeled through nonlinear differential equation and this is studied by 

reducing it to linear equation by Quasi-linearization technique. 

In the steady-state convection-diffusion problem there arises a governing differential 

equation in which the highest order derivative is multiplied with a perturbation or diffusion 

parameter.  Convection-diffusion problems form a class of singular perturbation problems. In 

the impact problem the non-linear wave equation exhibits convection as well as diffusion 

nature.  An introduction to the problem is presented and the methodology adopted is 

explained.  

 Convection is the process in which heat moves through a gas or a liquid as the hotter 

part rises and the cooler, heavier part sinks, where as in the diffusion a gas or liquid diffuses 

or is diffused in a substance, it becomes slowly mixed with that substance. 

 Singular perturbation problems occur very frequently in various fields of Science and 

Engineering such as Fluid Dynamics, specially the fluid flow problems involving large 

Reynolds number.  In general, any differential equation in which the highest order derivative 

is multiplied by a small positive parameter  ε  (o<ε<< 1) is called singular perturbation 

problem.  In fact, any differential equation whose solution Changes rapidly in some parts of 

the interval are generally known as singular perturbation problem and also as boundary layer 

problem. A boundary layer by definition is a narrow region, where the solution of a 

differential equation changes rapidly.  Further the thickness of the boundary layer tends to 

zero as ε→0. 

Imagine a river flowing strongly and smoothly.  Liquid pollution pours into the water 

at a certain point.  What shape does the pollution stain form on the surface of the river?  Two 

physical processes operate here: the pollution diffuses slowly through the water, but the 

dominant mechanism is the swift movement of the river, which rapidly convects the pollution 

downstream.  Convection alone would carry the pollution along a one-dimensional curve on 

the surface; diffusion gradually spreads that curve, resulting in a long thin curved wedge 

shape.  When convection and diffusion are both present in a linear differential equation and 

convection dominates, we have a convection-diffusion problem. 



4 

 

 

 

DEFINITION 

In this section we give briefly the definition of singular perturbation problem in its 

simplest and most commonly used form. In general, any differential equation in which the 

highest order derivative is multiplied by a small positive parameter ε (0<ε<< 1) is called 

Singular perturbation Problem. Infact, any differential equation whose solution changes 

rapidly in some parts of the interval is generally known as Singular Perturbation problem and 

also called as Boundary Layer Problem.  A Boundary Layer problem by definition is a 

narrow region, where the solution of a differential equation changes rapidly. In this region 

diffusion term dominates.  Further the thickness of the boundary layer approaches to zero as 

ε→0. 

 

MOTIVATION  

Differential equations occur very frequently in the mathematical modeling of physical 

problems in Science and Engineering.  Since exact solutions for most of these problems are 

not available, a resort to the approximation methods for getting the solution of such problems 

is unavoidable.  The availability of high speed digital computers has made it possible to take 

such a task when the approximation method involves numerical computation.   The most 

commonly employed approximate methods, for solving such type of problems are the finite 

difference method and the finite element method.  Even though the finite element method is 

somewhat difficult than the finite difference method from the point of view of computer 

programming, it has certain inherent advantages, namely the approximation of solutions can 

be obtained easily in more complicated regions etc. 

Convection-diffusion problems occur very frequently in the field of Fluid dynamics 

with Large Reynolds number, Heat and mass Transfer and Chemical Reaction problems. In a 

differential equation the highest order derivative multiplied with a perturbation parameter ε 

which is positive and very close to zero and the first order derivative terms serves as 

convective atmosphere. It means on most of the domain the solution has convection nature in 

the sense that solution   behaves well but in the sub-domain near to the boundary layer region 

there exists a sub-region called narrow region where the gradient of the solution is large 
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indicating that diffusion effects in this region stating that there is a boundary layer for 

specific values of the argument. The thickness of the boundary layer goes to zero as 

perturbation parameter approaches to zero. In this boundary layer region there are possible 

oscillations in the computed solution by employing numerical methods.  The challenging task 

here is to apply suitable numerical methods like finite difference methods, finite element 

methods in order to get reasonable accuracy in the computed solution. We are selected most 

of the problems in this thesis which admits analytical solutions. The reason behind this 

choice is, we can compare the computed solution with the analytical solution. 

 We can see that the solution of convection-diffusion problem has a Convective nature 

on most of the domain of the problem, and the diffusive part of the differential operator is 

influential only in the certain narrow sub-domains.  In the sub domain the gradient of the 

solution is large. This nature is described by stating that the solution has a boundary layer. 

The interesting fact that the elliptic nature of the differential operator is disguised on most of 

the domain means that numerical methods designed for elliptic problems will not work 

satisfactorily.  In practice they usually exhibit a certain degree of instability.  The challenge 

then is to modify these methods into a stable form without neglecting their accuracy in 

numerical methods. 

A problem which we shall be referring to as impact problem is also discussed in the 

thesis in view of its commonality with the other problems studied in the thesis.  In the impact 

problem, a non-linear convection-diffusion problem is studied. When two objects with 

distinct velocities come into contact with one another, an impact occurs and wave 

propagation exists in the collided bodies. The nonlinear wave propagation that occurs as a 

result of the impact is modeled through nonlinear differential equation and this is studied by 

reducing it to linear equation by Quasi-linearization technique. 

 It is well known that differential equations occur very frequently in the mathematical 

modeling of physical problems in Science and Engineering.  Since exact solutions for most 

of these problems are not available, approximation methods for obtain the solution of such 

problems is unavoidable..   The most commonly employed approximate methods, for solving 

such type of problems are the finite difference method and the finite element method.  Even 

though the finite element method is somewhat more difficult than the finite difference 

method from the point of view of computer programming, it has certain natural advantages 
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that the approximation of solutions can be obtained accurately even in more complicated 

regions. 

  In this thesis, we applied finite difference   methods to compute the solutions of some 

such problems numerically.   We observe that the solution of convection-diffusion problem 

has a convective nature on a larger part of the domain of the problem, and the diffusive part 

of the differential operator is influential only in a certain narrow sub-domain.  In the sub 

domain the gradient of the solution is large. This nature is described by stating that the 

solution has a boundary layer.  The numerical methods that are designed for solving such 

elliptic differential operators will not work satisfactorily through out the domain since the 

solution in general is well behaved in the convective region while it exhibits instability in the 

boundary layer region where the equation is influenced by diffusion.   The challenge then is 

to modify these numerical methods into a form without neglecting the accuracy and obtain a 

well behaved solution through out the domain.   

 

REVIEW OF LITERATURE: 

It is well known that differential equations occur very frequently in the mathematical 

modeling of physical problems in Science and Engineering.  Since exact solutions for most 

of these problems are not available, approximation methods for getting the solution of such 

problems is unavoidable. The availability of high speed digital computers has made it 

possible to take such a task when the approximation method involves numerical computation.   

The most commonly employed approximate methods, for solving such type of problems are 

the finite difference method and the finite element method.  Even though the finite element 

method is somewhat more difficult than the finite difference method from the point of view 

of computer programming, it has certain inherent advantages that the approximation of 

solutions can be obtained accurately even in more complicated regions. 

The study of the numerical solution of convection-diffusion problems goes back to 

1950’s.  Allen and Southwell [4] in 1955 initiated the numerical studies dealing with singular 

perturbation problems while discussing the motion in two dimensions of a viscous fluid past 

a fixed cylinder. Only in 1970’s, these studies acquired a research momentum that is 

continuing till now. The one-sided difference scheme has been described by Dorr [16] 

constructed a difference scheme which represents the rate of decay in the boundary layer 
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correctly for the homogeneous singular perturbations problems.  In 1972, Finlayson reviewed 

the method of weighted residuals and variational principles [20].  Hemker and Miller, in [24] 

made a detailed study of numerical analysis of singular perturbation problems.   Eckhaus, in 

[19], exhaustively discussed the asymptotic analysis of singular perturbations. Keller [33] 

made a numerical solution of two point boundary value problems.   Douglas and Dupont 

presented Galerkin methods for parabolic equations with nonlinear boundary conditions [17].   

Doolan et al. [15] discussed some uniform numerical methods for problems with initial and 

boundary layers. 

 Osher in [47] considered some nonlinear singular perturbation problems and he 

discussed the one sided difference schemes.  Ross in [57] derived the necessary convergence 

conditions for backward schemes in two dimensional case. Carey and Pardhanani has studied 

Multigrid Solution and Grid Redistribution for   Convection Diffusion problem in [12]. Han 

and Kellogg studied the differentiability properties of solutions of the two dimensional 

convection diffusion   equation   in a square region   in [23] in a two dimensional space. 

Brandt and Yavneh observed the inadequacy of first order upwind difference schemes with 

reference to certain recirculatory flows in [11].  Ross has presented ten ways to generate 

uniformly convergent numerical schemes to solve singular perturbation problems in [58].  

Stynes and Tobiska derived necessary conditions for uniform convergence for difference 

schemes in two dimensional convection diffusion problems in [67].   Drofler in [18] obtained 

uniform a priori estimates for singularly perturbed elliptic equations in multidimensions.   

Shih and Elman developed some iterative methods for stabilized convection diffusion 

problems in [63].  In this context it is worth mentioning that the survey paper by Kadalbajoo 

and Reddy [30], gives an intellectually stimulating outline of the singular perturbation 

problems and of fluid dynamical boundary layers.  This survey paper will remain as one of 

the most readable source on convection-diffusion (or singular perturbation) problems.  In 

2003, Kadalbajoo and Patidar made an exhaustive survey of singularly perturbed problems in 

partial differential equations in [31] and presented the then existing state of art.  Another 

excellent survey article is due to Stynes [66], on steady state convection diffusion problems.  

Herein the author highlighted the notion of artificial diffusion. 
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 While the numerical analysis of singularly perturbed convection-diffusion problems 

has received much attention in the recent years the main focus has been on   the solution 

behavior in the boundary layer region. Roos et al. in the reference[59] have given 

interpretation about the nature of convection dominated flows with a physical interpretation. 

 Pearson [49] was perhaps the first to solve numerically linear convection-diffusion 

type problems using variable mesh size in the finite difference scheme.  Pearson [50] also 

solved non-linear singular perturbation problems using variable mesh methods.  Abrahamson 

et. al. [1] have described the refinement of upstream one-sided difference scheme.  A 

modified upwind scheme for convective diffusion equations which combines the advantages 

of being stable of second order is described by Axelsson and Gustafsson [7]. 

 Convection-diffusion problems are solved by many researchers for the past five 

decades which are the   linearised equations from Navier –Stokes equations with a large 

Reynolds number. Due to the high speed computers computations are made simple for large 

amount of calculations.  This survey cannot, for reasons of length, give a complete account of 

the many numerical methods used to solve steady-state convection-diffusion problems.  

 Multi Grid Adaptive techniques for solving convection-diffusion problem have been 

described by Brandt [11]. Multi-Grid adaptive technique is a general strategy of solving 

continuous problems by cycling between coarser and finer levels of discretization.  It 

provides very fast general solvers together with nearly adaptive optimal discretization 

schemes.  In the process, boundary layers are automatically either resolved or skipped, 

depending on a control function, which expresses the computational goal.  The global error 

decreases exponentially as a function of the overall computational work, in a uniform rate 

independent of the magnitude of the singular perturbation terms.  These methods are proved 

to be of high order and uniformly stable. These schemes are applicable for higher order 

dimensional problems.   Hsiao, G.C. and Jordan, K.E [25] have studied the solutions to the 

difference equations of singular perturbation problems. In [9] Bellman and Kalaba solved 

non-linear singularly perturbed problem by applying quasi-linearization technique. 

           

For a detailed theory and analytical discussion on singular Perturbation Problems one 

may refer to the treatises and high level monographs: O’Malley[44] , O’Malley[45 ], Nayfeh 
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[41], Nayfeh [42] , Nayfeh [43] , Kevorkian and Cole [35] Bender and Orszag[ 10] ,  Smith 

[64] ,  Meyer and Parter [37] ,  and Van Dyke [70]. 

 For a detailed Numerical and Asymptotic discussion on Singular Perturbation 

Problems one may refer to the books and high level monographs: Hemker and Miller [24] , 

Miller[38] , Miller [39] , Axelsson et al.[8] Doolan et. al. [15]. 

 The literature in numerical methods could not have been what it is but for the 

excellent monumental works of Meyer and Parter [37], Miller  [38], Neyfeh  [41,42], Protter 

and Weinberger [53], Reddy [55], Smith [64], O’Malley [45, 46], Il’in [27], Kevorkian and 

Cole [36], Samarskii [60], Verfurth [71], Shashkov[62], Wrigglers [72], Jain [28] and 

Quarteroni [54].  

 

OUR PRESENT WORK: 

 

Consider an elliptic operator in which the second order derivatives are multiplied by a 

parameter  ε  that is allowed to be close to zero.  These derivatives model diffusion while the 

first– order derivatives are associated with the convective or transport processes.   In classical 

problems where  ε   is not close to zero, diffusion is the dominant mechanism in the model 

and the first-order convective derivatives play a relatively minor role in the analysis.   On the 

other hand, when  ε  is close to  zero and the elliptic differential operator has convective 

terms,  the convective terms have a significant influence on the theoretical and numerical 

solution of the problem and cannot be summarily dismissed as ‘lower–order’ terms. When  ε  

is close to zero and the elliptic differential operator has convective terms, it is called a 

convection diffusion operator. The problems involving these operators are called   

convection-diffusion problems and these problems form a class of singular perturbation 

problems. In this thesis, we applied finite difference   methods to compute the solutions of 

some such problems numerically.   We observe that the solution of convection-diffusion 

problem has a convective nature on a larger part of the domain of the problem, and the 

diffusive part of the differential operator is influential only in a certain narrow sub-domain.  

In the sub domain the gradient of the solution is large. This nature is described by stating that 

the solution has a boundary layer.  The numerical methods that are designed for solving such 

elliptic differential operators will not work satisfactorily through out the domain since the 
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solution in general is well behaved in the convective region while it exhibits instability in the 

boundary layer region where the equation is influenced by diffusion.    

A second- order differential operator in n- variables whose highest-order derivatives are 

∑
= ∂∂

∂−
n

1ji, xx

u2

ij
a

ji

                                                                                                        (1.1) 

where the 
ij

a  are constants, is said to be elliptic if 

∑
=

≥∑
=

n

1i

2
i
ξσ

n

1ji,
ξ jξiij

a    for all    
j
ξand

i
ξ                                                                 (1.2) 

where  σ >0 is called an ellipticity constant.  Consider the second-order differential operator 

L in n- variables defined on some bounded domain  Ω with open connected set D by 

Lu(x) = u(x) g(x)

i
x

u(x)n

1i
(x)bi 

n

1ji, x jxi

u(x)
2

ij
a +

∂
∂

∑
=

+∑
= ∂∂

∂−                                              (1.3)  

where 
ij

a  are constants. We assume that L is elliptic in the sense of (1.2).  Denote the 

closure of D by D̂  and its boundary by D∂ , and let )(sCk  denote the space of functions that 

are defined on a set S and k-times differentiable on S. 

In the differential operators in convection-diffusion problems the ellipticity constant 

σ  can be close to zero.  If the value of  σ is near zero, then the convergence of the computed 

solution by employing numerical scheme is a challenging job. Taking this into account, we 

employ a numerical method so that its solution is stable and appropriate.  In this thesis an 

attempt is made to solve convection-diffusion problem numerically to attain reasonable 

accuracy for the solution near the boundary layer. Numerically computed solution is 

compared with the analytical solution and found that the diffusion coefficient is significant 

especially in the boundary layer region. 

 While using a uniformly convergent scheme  for a convection– diffusion problem we 

considered a general convection-diffusion equation  

1x0for   f(x)   U(x)b(x)  (x)U'a(x)  (x)U ''ε-    U(x)L <<=++=              (1.4) 

with the Dirichlet’s boundary conditions            U (0) = U (1) = 0                                    
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where 0 < ε <<1, a(x) >α > 0 and b(x) ≥ 0 on [0,1] and presume that   a(x) ≤1.  Here L is the 

differential operator.  The above problem is solved by the method proposed by the Il’in –

Allen-Southwell which is uniformly convergent method.  The convergence criteria are 

realized through computation, based on Roos et al.[59] for most of the values of the diffusion 

coefficient. In this method Green’s function operator is used to find the new finite difference 

scheme. 

We have employed finite element method in this thesis  to solve singularly perturbed 

two point boundary value problems using cubic B splines.  The finite element method 

involves variational methods like Rayleigh-Ritz method, Least squares method, Petrov-

Galerkin method, Galerkin method, Collocation method etc.  In finite element method, 

approximate solution of a given differential equation is a linear combination of a set of basis 

functions which constitutes a basis for the approximation space under consideration. We 

have employed Galerkin method for solving certain class of singularly perturbed two point 

boundary value problems with cubic B-splines as basis functions.  The basis functions have 

been redefined into a new set of basis functions which vanish on the boundary where the 

Dirichlet type of boundary conditions is applied.  A finer mesh has been taken near and 

around a parameter δ close to zero where the left boundary layer is located.  Several 

examples including linear and nonlinear cases have been considered for testing the efficiency 

of the proposed method.  The solution for a nonlinear problem is obtained as the limit of the 

solution of a sequence of linear problems generated by quasi-linearization technique due to 

Bellman and Kalaba [9]. The solutions obtained, by the method developed for the considered 

examples have been compared with the exact solutions.  We observed that the approximate 

solutions obtained by the developed method are in good agreement with the exact solutions 

of some known problems available in the existing literature. 

 

Consider the following linear singular perturbed two-point boundary value problem 

   1x0  ; (x) b(x)y(x) (x)'y a(x)  (x)''y ε <<=++ c               (1.5) 

with y(0) = y0 and y (1) = y1 
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where ε  is a small positive parameter ( 0<  ε << 1 ) and y0 , y1 are given constants and a(x) 

, b(x) and c(x) are assumed to be continuously differentiable functions in [0,1]. Further, we 

assume that a(x) ≥ M>0 throughout the interval [0, 1] where M is some positive constant.  

This assumption purely implies that the boundary layer will be in the neighborhood of x=0. 

Existing numerical methods produce good results only when we take step length of interval     

h ≤ε .  This is very costly and time consuming process.  Hence the researchers are 

concentrating on developing the methods, which can work with reasonable step length h.  For 

this, nowadays researchers are adopting one of the following methods. 

(i) The interval is subdivided into two regions [0,δ ] and [δ, 1], where  δ is the point near 

which the boundary layer is located.  The region [0,δ] is called inner region and the region 

[δ,1] is called outer region.  The problem in the inner region is treated as an initial value 

problem and the problem in the outer region is treated as a boundary value problem.  The 

initial value problem in the inner region problem is solved and terminal boundary condition 

is obtained.  Using this terminal boundary condition, the boundary value problem in the outer 

region problem is solved. 

(ii)  Using the variable mesh, one can take finer mesh around and near the point where the 

boundary layer is located. 

 Since the finite element method can be easily adaptable with variable mesh, we intend 

to use finite element method to solve the given singular perturbation problem. 

 For the case of single differential equation, it is shown in Douglas and Dupont [17] 

that the cubic B- splines yield 4
th

 order accurate results.  Accordingly, B-splines as basis 

functions have been used by us in our work. 

 The existence of the cubic Spline interpolate S(x) to a function f(x) in closed interval 

[0,1] for spaced knots 0 = x0 <x1 < x2 < x3 < …. < Xn-2 < xn-1 < xn =1 is established by 

constructing it.  The construction of S(x) is done with the help of cubic B-Splines. Introduce 

six additional knots x -3 , x -2 , x -1 , x n+1 , xn+2 and x n+3  such that 

x -3 < x -2 < x -1< x 0   and  x n+3 > xn+2 > x n+1 > x n. 

Now the cubic B-splines Bi (x) , given in [13] , are defined by 
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It can be shown that the set {B -1(x), B 0 (x), B 1(x), B 2 (x), B n (x), B n+1(x)} forms a basis 

for the space S 3 ( π ) of cubic polynomial splines [52]. Schoenberg [61] has proved that the 

cubic B-splines are the unique non-zero splines of smallest compact support with knots at   

  x -3 < x -2 < x -1< x 0  <  x n  < xn+1  < xn+2  <  xn+3. 

Any cubic spline defined with a unique set of given knots [3] can be uniquely expressed as a 

linear combination of B-spline basis set {B -1(x), B 0 (x), B 1(x), B 2 (x), B n (x), B n+1(x)} 

 We develop a method based on Galerkin method with B-spines as basis functions for 

solving a general linear singularly  perturbed two point boundary value problem with left 

boundary layer. 

We discussed a numerical integration method in this thesis. This method reduces a 

second order differential equation into a first order differential equation with a small 

deviating argument.  To set the stage for the numerical integration method, we consider the 

following governing linear Convection-diffusion equation. 

                                1x0  ; )()()()(
'

)()(
''

y ≤≤=++ xfxyxbxyxaxε                      ) 1.6(a) (   

 with y (0) =α and y (1) = β                                                                    

where ε  is a small positive parameter called diffusion parameter which lies in the interval 

0<ε <<1; α and β are given constants; a(x), b(x) and f(x) considered to be sufficiently 

continuously differentiable functions in [0,1]. Furthermore, we assume that a(x) ≥ M > 0 

throughout the interval [0,1] in equation (1.6(a)), where M is some positive constant.  This 

assumption merely implies that the boundary layer will be in the neighborhood of x=0. 
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Let δ be a small positive deviating argument (0< δ ≤ 1).  By applying Taylor series 

expansions in the neighborhood of the point x, we have 

                                              )(
''

2

2
)(')()( xyxyxyxy

δ
δδ +−≅−                            (1.7 ) 

 Consequently applying equation (1.7) in Eq. (1.5) the second order derivative   is 

replaced by the first-order derivative with a small deviating argument δ. The resultant first 

order differential equation is numerically solved by applying Simpson’s one-third rule to get 

the three term recurrence relation.  The three term recurrence relation is solved by Thomas 

algorithm. The main advantage of this method is that it does not require very fine mesh size. 

 In this thesis we have considered a convection-diffusion problem in one-dimension 

with variable coefficient wherein an artificial –diffusion term [66] is present.  As a closed 

form solution, in general, is not possible the classical Frobenious method   of series solution 

was used to solve the governing differential equation.  Further the problem is also solved by 

making use of a central difference scheme.  The Frobenious series solution is numerically 

computed and the results are compared with those obtained by central difference scheme.  

The results are depicted through graphs and the results obtained by both the methods seem to 

be in good agreement.  It is observed that the artificial diffusion term plays a significant role 

in the behaviour of the solution. 

 The governing equation of artificial diffusion-convection problem in one-dimension 

is    

0u(1)   , 0u(0)th         wi1u   
dx

du
 x 

2dx

u 2d
) 

2

hx
ε ( ===+++−                                         (1.8) 

Let 
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2

h x
(ε

1
  -     r(x) ,

)  
2

h x
  ε (

1
  -     q(x) , 

)  
2

h x
  (ε

x
    p(x)

+
=

+
=

+
−=  . 

we can bring (1.8) to the standard form: 

 0u(1)   , 0u(0)h        wit)x(ru  q(x)  
dx

du
 p(x)  

2dx

u 2d
 ===++                                          (1.9)  

The differential equation (1.9) is linear with variable coefficients.  Closed form 

solution for this equation seems to be out of reach.  Hence we propose to solve by applying 

series solution method due to Frobenious with x =0 as an ordinary point of (1.9). Method   of 



15 

 

 

 

series solution was used to solve the governing differential equation (1.9). Further the 

problem is also solved by making use of a central difference scheme.  The Frobenious series 

solution is numerically computed and the results are compared with those obtained by central 

difference scheme. The results are depicted through graphs and the results obtained by both 

the methods seem to be in good agreement.  It is observed that the artificial diffusion term 

plays a significant role in the behaviour of the solution. The results are compared with the 

results in Chapter-2. We have observed that artificial diffusion plays a dominant role in the 

boundary layer region. 

The convection-diffusion problem is extended to two-dimensional space. In two-

dimensional space the proposed problem is solved on a unit square mesh with the prescribed 

boundary conditions by finite difference method where in central difference scheme is 

employed. In the process finite difference scheme of Standard five point formula was 

employed.  Initial approximations to temperature distribution function were given on the 

basis suitable to physical nature of the problem. 

Here the governing differential equation in two dimensions is 

 f(x,y) ,y) b(x,y) u(xu (x,y) a(x,y) ε ∆u(x,y) =+∇+−
 

on     R
2⊂Ω  with u(x,y) = g(x,y)  on ∂Ω                                                        (1.10) 

where 0 < ε <<1, and the functions a, b and f which are assumed to be Holder continuous on 

Ω , the closure of Ω . Here we also assume that b≥0 on Ω .  Here Ω is any bounded domain 

in R
2
 with a piecewise Lipschitz–continuous boundary ∂Ω. Let us suppose that g is 

continuous except perhaps for a jump discontinuity at a single point.  The results thus 

obtained are plotted through graphs and the physical nature of the problem is discussed.  It is 

observed that there is a boundary layer at some specific values of arguments. 

In this thesis a problem which is related to wave propagation is also studied. This 

problem is taken up for study in view of its analogy with convection – diffusion problem. 

 When two bodies which have distinct velocities come into contact, an impact occurs. 

The impact force is a function of time ‘t’ which is acting like a compression force. The 

impact time is very short and the stresses generated are high. We have   studied non-linear 

wave-propagation after impact that occurs in the bodies after impact. The governing equation 

proposed by Gol’dberg has Non-linear convection-diffusion nature which is analogous to the 
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nature of differential equations studied in the earlier chapters.  The wave propagation in the 

bodies is naturally dependent on the material of the bodies with which they are composed. 

Here we considered two materials of same physical nature. Nonlinearity is studied after 

impact.  This chapter presents a numerical study of propagating pulses and harmonic waves 

in nonlinear media using a Finite difference scheme.  This study focuses on longitudinal, 

one-dimensional wave propagation. In the finite difference scheme, non-linear system is 

reduced to a linear system by applying Quasi-linearization method. 

 

The governing non-linear wave equation which is developed by Gol’dberg (1961) is 

          

x
2

u
2

  ) 
x

u
-1 ( c

2
  

t 
2

u
2

∂

∂
∂
∂

=

∂

∂ γ                                                                        (1.11)  

with the prescribed physical conditions.  This non-linear differential equation is made linear 

by applying quasi-linearization method. The resultant linear equation is solved by applying 

central differencing scheme.  The numerically computed results reveal the material nature. 
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STRUCTURE OF THE THESIS: 

The thesis consists of five parts 

 Part-I consists of a single chapter, Chapter- 1 which is introductory in nature and 

gives an introduction to the steady-state convection-diffusion problems and impact problem.   

In the steady-state convection-diffusion problem there arises a governing differential 

equation in which the highest order derivative is multiplied with a perturbation or diffusion 

parameter.  In the impact problem the non-linear wave equation exhibits convection as well 

as diffusion nature.  An introduction to the problems is presented and the methodology 

adopted is explained. 

 Part II consists of  Chapters 2-5. 

 In Chapter 2, we present a computational method to solve steady state convection – 

diffusion problem.  In convection-diffusion problem, in a larger part of the domain, transport 

processes dominate where as diffusion effects restrict only to a relatively small portion of the 

domain.  This state of affairs means that one cannot depend on the elliptic nature of the 

differential operator to ensure the convergence of standard numerical algorithms.  In this 

chapter, the asymptotic nature of solution to stationary convection-diffusion problem is 

considered and a numerical technique to control the oscillatory behavior of the computed 

solution in a boundary layer region at the specific value of the argument is proposed.  This is 

achieved through a stretched variable transformation. 

 We have solved the problem on steady state convection-diffusion by Finite difference 

method where in a central difference scheme is employed.  The same problem is also studied 

by asymptotic expansions method.  We observed that there is a right-boundary layer near 

specific value of the argument.  In this chapter the diffusion coefficient ε is a small positive 

parameter and coefficient of convection C   is a parameter independent of ε. Here C takes 

values according to the choices of different mesh sizes. 

 In Chapter 3, we deal with a uniformly convergent scheme for Convection –Diffusion 

problem. The above problem is solved by the method proposed by the Il’in –Allen, which is a 

uniformly convergent method [26].  The convergence criteria is realized through computation 

and based on the axioms proposed by Roos et al.[59], for lower values of the diffusion 

coefficient.  Under a certain condition, the solution is seen to be uniformly convergent for 

any choice of the diffusion parameter.  The study provides a first- order uniformly 
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convergent method with discrete maximum norm.  It was observed that the error decreases as 

step size h gets smaller for smaller or larger values of the perturbation parameter where as for 

the mid range values of the perturbation parameter the trend are reversed.  An analysis is 

carried out to check the validity of the solution with some existing analytical solutions 

available.  The uniformly convergent method gives better results than the finite difference 

methods. The computed and plotted solutions of this method are in good agreement with the 

exact solution available. 

Chapter 4 is devoted to the application of finite element method to solve singularly 

perturbed two point boundary value problems using cubic B- splines.  The finite element 

method involves variational methods like Rayleigh-Ritz method, Least squares method, 

Petrov-Galerkin method, Galerkin method, Collocation method etc.  In finite element 

method, approximate solution of a given differential equation is a linear combination of a set 

of basis functions which constitutes a basis for the approximation space under consideration. 

In this chapter we have employed Galerkin method for solving certain class of singularly 

perturbed two point boundary value problems with cubic B-splines as basis functions.  The 

basis functions have been redefined into a new set of basis functions which vanish on the 

boundary where the Dirichlet type of boundary condition is defined. A finer mesh has been 

taken near and around a parameter δ close to zero where the left boundary layer is located.  

Several examples including linear and nonlinear cases have been considered for testing the 

efficiency of the proposed method.  The solution for a nonlinear problem is obtained as the 

limit of the solution of a sequence of linear problems generated by quasi-linearization 

technique due to Bellman and Kalaba [9]. The solutions obtained, by the method developed 

for the considered examples have been compared with the exact solutions.  We observed that 

the approximate solutions obtained by the developed method are in good agreement with the 

exact solutions of some known problems available in the existing literature. 

 Chapter-5 is devoted to the  study of a numerical integration method for solving 

general steady-state convection-diffusion problems.   In the fifth chapter the Numerical 

Integration method is developed by introducing the deviating argument. In this process, 

Simpson rule is applied to calculate the quadrature.  The results thus obtained show good 

agreement between the exact solution and the computed solution. 
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In this Chapter the governing second-order differential equation is replaced by an 

approximate first-order differential equation with a small deviating argument.  Then, 

Simpson one-third formula is used to obtain the three term recurrence relationship.  Thomas 

Algorithm is applied to solve the resulting tri-diagonal algebraic system of equations.  The 

proposed method is iterative on the deviating argument.  The method is to be repeated for 

different choices of the deviating argument until the solution profile stabilizes. The main 

advantage of this method is that it does not require a very fine mesh size.  To examine the 

applicability of the method employed, we have solved several linear model problems with 

left-end boundary layer or right –end boundary layer or an internal layer and   presented the 

numerical results.  It is observed that the numerical integration method approximates the 

exact solution extremely well. 

In this context it is worth mentioning that the survey paper by Kadalbajoo [30], gives 

an erudite exposition of the singular perturbation problems and their treatment on fluid 

dynamical boundary layers.  This survey paper will remain as one of the most readable 

source on convection-diffusion (or singular perturbation) problems. 

 Part III consists of Chapters 6 and 7. Chapter 6 deals with a convection-diffusion 

problem in one-dimension with variable coefficient wherein an artificial –diffusion term is 

present.  Stynes [66] introduced the notion of artificial diffusion with respect to a general 

convection-diffusion problem to get a reasonably accurate solution in the boundary layer 

region. The numerical artificial-diffusion controls the oscillations near the boundary layer 

region. 

As a closed form solution, in general, is not possible, the classical Frobenious method   

of series solution was used to solve the governing differential equation in this chapter.  

Further, the problem is also solved by making use of a central difference scheme.  The 

Frobenious series solution is numerically computed and the results are compared with those 

obtained by central difference scheme.  The results are depicted through graphs and the 

results obtained by both the methods seem to be in good agreement.  It is observed that the 

artificial diffusion term plays a significant role in the behavior of the solution and reduces the 

oscillations in the computed solution. 

 In Chapter-7 we present a numerical study of convection –diffusion problem in two- 

dimensional space.  It is solved on a unit square mesh with the prescribed boundary 
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conditions by finite difference method wherein central difference scheme is employed.  In the 

process, finite difference scheme of standard five point formula was employed. Initial 

approximations to temperature distribution function were given motivated by the physical 

nature of the problem by intuition.  The results thus obtained are plotted through graphs and 

the physical nature of the problem is discussed.  It is observed that there is a boundary layer 

at the specific values of arguments. 

 Part IV consists of a single Chapter, Chapter 8.  This chapter aims to study the 

Numerical study of wave propagation in a non-linear medium due to impact. 

When two objects which distinct velocities have come into contact, an impact occurs. 

The impact force is a function of time‘t’ which is acting like a compression force. The impact 

time is very short and the stresses generated are high. We have   studied non-linear wave-

propagation after impact that occurs in the bodies after impact. The governing equation 

proposed by Gol’dberg  has non-linear convection-diffusion nature which is analogous to the 

nature of differential equations studied in the earlier chapters.  The wave propagation in the 

bodies is naturally dependent on the material of the bodies with which they are composed. 

 Here we considered two materials of same physical nature. Nonlinearity is studied 

after impact.  This chapter presents a numerical study of propagating pulses and harmonic 

waves in nonlinear media using a Finite difference scheme.  This study focuses on 

longitudinal, one-dimensional wave propagation. In the finite difference scheme, non-linear 

system is reduced to a linear system by applying Quasi-linearization method in which 

iteration-across the time step concept is used.  The results numerically obtained reveal the 

material nature. 

 In this chapter we solved non-linear convection-diffusion type wave equation by 

applying quasi-linearization technique. In this technique the successive approximation values 

are calculated by iteration across the time step.  The Governing equation (1.11) is the non-

linear wave - equation developed by Gol’dberg (1961).  It can be easily noticed that this is 

the well known one dimensional wave equation when  γ  = 0. 

 Part V consists of a single chapter, Chapter 9. 

This chapter is devoted to present the main conclusions of the Thesis.  We also present some 

problems which deserve to be studied as a sequel to the present work. 
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CHAPTER-2 

 

COMPUTATIONAL   METHOD TO SOLVE STEADY STATE CONVECTION – 

DIFFUSION PROBLEM 

 

INTRODUCTION: 

In convection-diffusion problem, transport processes dominate where as diffusion 

effects restrict to a relatively small portion of the domain.  This state of affairs means that 

one cannot depend on the ellipticity nature of the differential operator to ensure the 

convergence of standard numerical algorithms.  In this chapter, the asymptotic nature of 

solution to stationary convection-diffusion problem is considered and a numerical 

technique to control the oscillatory behavior of the computed solution at the specific 

value of argument is developed. 

Consider the elliptic operator whose second-order derivative is multiplied by a 

parameter ε  that is allowed to be close to zero.  These derivatives model diffusion while 

the first – order derivatives are associated with the convective or transport processes.   In 

classical problems where  ε   is not close to zero, diffusion is the dominant mechanism in 

the model and the first-order convective derivatives play a relatively minor role in the 

analysis.   On the other side, when  ε  is near zero and the elliptic differential operator has 

convective terms, it is called a convection-diffusion operator.  The convective terms have 

a significant influence on the theoretical and numerical solution of the problem and 

cannot be summarily dismissed as ‘lower–order’ terms. The Convection-diffusion 

problems form a class of singular perturbation problems.   Here we applied finite 

difference    method to compute the solution numerically. 

 We can see that the solution of convection-diffusion problem has   Convective nature 

on most of the domain of the problem, and the diffusive part of the differential operator is 

influential only in the certain narrow sub-domain.  In the sub domain the gradient of the 

solution is large. This nature is described by stating that the solution has a boundary 

layer. 

The interesting fact that the elliptic nature of the differential operator is disguised on 

most of the domain means that numerical methods designed for elliptic problems will not 
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work satisfactorily.  In practice they usually exhibit a certain degree of instability.  The 

challenge then is to modify these methods into a stable form without neglecting their 

accuracy in numerical methods. 

 A second- order differential operator in n- variables whose highest-order derivatives 

are 

∑
= ∂∂

∂−
n

1i,j x jxi

u
2

ij
a

                                                                                                         (2.1) 

Where the aij’s are the constants, is said to be elliptic if 

∑
=

≥∑
=
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1i

2
i
ξσ

n

1i,j
ξ jξiij

a

   for all    ξi  and  ξj                                                           (2.2) 

where  σ >0, called the ellipticity constant.  The differential operators in convection-

diffusion problems stretch these ellipticity constants close to zero.  If the value of  σ is 

near zero, then the convergence of the computed solution by employing numerical 

scheme is a challenging job.  Taking this into account, we develop a numerical method so 

that its solution is stable and appropriate. This motivates us to solve convection-diffusion 

problem numerically to attain reasonable accuracy for the solution near the boundary 

layer. 

To solve convection-diffusion problem one has to understand the concepts about 

Maximum principles and asymptotic expansions. To carry out any numerical analysis we 

want a priori knowledge of some bounds on the derivatives of the solution of this 

problem. 

 

MOTIVATION 

The numerical solution of convection-diffusion problems goes back to the 1950s 

Allen and Southwell 1955[4] but only in the 1970s did it acquire a research momentum 

that has continued to this day.  In the literature this field is still very active and as we 

shall see much effort can be put in. Perhaps the most common source of convection-

diffusion problem is the Navier–Stokes equations having nonlinear terms with large 

Reynolds number.  Morton in his classic treatise [40] pointed out that this is by no means 

the only place where they arise. He listed ten examples involving convection-diffusion 
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equations that include the drift-diffusion equations of semiconductor device modeling 

and the Black–Scholes equation from financial modeling. He also observed that accurate 

modeling of the interaction between convective and diffusive processes is the most 

ubiquitous and challenging task in the numerical approximation of partial differential 

equations. 

In this chapter, the diffusion coefficient ε is small positive parameter and coefficient 

of convection C will denote a generic constant that is independent of ε. Here C takes 

values according to different mesh sizes. 

 

ANALYTICAL TOOLS 

 Consider the second-order differential operator L in n- variables defined on some 

bounded domain  Ω with open connected set D by 

Lu(x) = 

g(x) u(x)

i
x

u(x)n

1i
(x)bi 

n

1i,j x jxi

u(x)
2

ij
a +

∂
∂

∑
=

+∑
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∂−
                                     (2.3) 

where  aij’s are constants. We assume that L is elliptic in the sense of (2.1). Denote the 

closure of D by D̂  and its boundary by D∂ , and let )(sCk
 denote the space of functions 

that are defined on a set S and k-times differentiable on S. 

 

MAXIMUM PRINCIPLE 

Let )()ˆ( 20
DCDCu ∩∈  satisfy the differential inequality Lu ≥ 0 on D.  Suppose that 

functions bi and g are bounded on D and g ≥ 0 on D.  Suppose also that u ≥ 0 on ∂D  then 

u ≥ 0 on D̂ . 
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FORMULATION OF THE PROBLEM 

 

The two-point boundary value problem 

Lu(x) =  - ε u″(x) + u′(x) = f(x) for 0 <x <1                                                                   (2.4) 

with       u(0)=0 , u(1)=0 

defines convection – diffusion problem. Here ε is a very small positive parameter and f is 

continuously differentiable in the closed interval [0,1]. The coefficient of the first-order 

derivative is much larger in magnitude than the coefficient of the second-order derivative 

i.e.  Diffusion is the dominant mechanism in the model and the first-order convective 

derivatives play a relatively minor role in the analysis.  If we set ε=0 then (2.4) becomes 

a first order differential equation by bringing a phenomenal change.  So we expect that 

this problem is Singularly Perturbed. i.e. in a Singularly Perturbed problem, for x œ[0,1] 

near the boundary layer 1=x
)

 we have 

u(x)lim
0ε

lim
x̂x

u(x)lim
x̂x

lim
0ε →→

≠
→→                                                                         (2.5) 

To get some immediate   insight into the solution of (2.4), we select a simple case with 

f(x)=1. Then the closed form solution of (2.4) takes the form 

1x0for

e
/1

1

e
/1

e
/)x1(

x)x(u ≤≤
−−

−−−−
−=

ε

εε

                                                        (2.6) 

The graph of the equation (2.6) at some selected value of the parameter ε is displayed 

below. 

 

Figure 2.1. 
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 It is clear that (2.5) holds well for the boundary layer at x̂ = 1. This is a narrow region 

where u is bounded and is independent of ε but its derivative increases as ε→0.  The 

asymptotic nature of solution to convection-diffusion problem will provide useful 

information about boundary layer. The behavior of the derivatives of the solution of (2.4) 

is critical for the numerical computing.  

With certain exceptional combinations of the boundary conditions and the force 

function f the problem (2.4) fails to be singularly perturbed.  For instance consider  

f(x) =1 and the boundary conditions are changed to u(0)=0, u(1) =1, then the solution of 

(2.4) becomes the well-behaved function u(x)=x and condition (2.5) need not be taken. i.e   

with this modified boundary conditions, the equation (2.4) becomes a regular  

perturbation problem. 

Consider an asymptotic expansion 

∑
∞

=0n
ε
n

(x)  un
     u(x )=           

                                                           (2.7) 

for the solution u(x)  of a boundary-value problem ( 2.4 ). 

Substituting this in (2.4) we get 

∑
∞

=
∑
∞

=
=+−

0n 0n
)x(f)x(u

'
n

n
)x(''

n
u εε

                                        (2.8) 

Comparing the coefficients of powers of ε, we get     

 

)(
''

1
)('

2
),(

''
0

)('
1

),()('
0

xuxuxuxuxfxu === )                                                                  (2.9)   

 

Here  (2.9) consists of  first-order differential equations  with two boundary conditions 

un(0)=0,  un(1)=0  ∀  n. If we consider the condition  un(0)=0  and discard the condition   

un(1)=0, then we  may be able to construct an asymptotic expansion.  i.e., in forming the 

asymptotic expansion, we can discard one boundary condition where a boundary layer 

occurs.  Now solve the equations (2.9) for u(x) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0fxfxu,0fxfxu,dttfxu ''
21

x

0

0 −=−== ∫  
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Then (2.7) becomes    ∑
∞

=
−=

0n

nε(0))nF(x)n(Fu(x)                                                    (2.10)  

Where      

( ) ( )∫=
x

0

dttfxF  

It is easily shown that  

∑
∞

=
+−=

0n
)kε 0(nε(0))nF(x)nF(u(x)                                                                  (2.11) 

for each  k ≥ 0. This function u(x) increases monotonically up to certain state δ≤≤ x0 , 

where δ is a constant in (0,1). for a choice of ε and falls steeply before x=1 such that 

u(1)=0 in the interval  (δ,1].  We say that at x=1, u(x) has a boundary layer. 

In solution (2.6) the term  e
/1 ε−

 is very small and can be ignored. To account the term  

ε/)x1(
e

−−
 of (2.6), the asymptotic expansion of (2.10) when f(x) =1 should contain a 

function of the variable  ε
)x1( −

 to control the oscillations.    Hence in the boundary 

layer equation, we define the stretched variable r = 
ε

x−1
 and rewrite the differential 

equation as a function of ρ instead of a function of x. 

Thus set u (ρ)=u(x)  for  0 < ρ < 
ε
1

 which corresponds to 0<x<1. Now the differential 

equation takes the form 

Lu)
ρ

u
ρρ

u(
ε

1'u
''

uε =+
−

=+−  

the original asymptotic expansion   ∑
∞

=0n

nε(x)nu    in (2.7) is satisfied 

i.e.,              f]
0n

nε(x)nu[L =∑
∞

=
. 

 So the correction v(r) that is to be added to this expansion must satisfy   Lv=0 i.e. 

0=+ ρρρ vv .  This second order  differential equation needs boundary conditions  on 

v(r) at  both  r=0 (at x=1) and r=1/ε  (at x=0 ).  We can now finally apply the original 
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boundary condition  u(1)=0, requiring  that  modified asymptotic  expansion  satisfies  

this condition  i.e 

∑
∞

=
=+

0
0 v(0) )1(

n

n
un ε

 

The two point boundary value problem that defines v is now completely specified and 

can be solved explicitly. 

V(r) =   e
-r

 v(0)   

∑
∞

=

−
−

0n

n
 )1(

)1(
εε une

x

 

=              

∑
∞

=−
−−

0
))0(F

n
- )1((

 

)1(

n

n
F

n

e

x
εε

 

Adding this term to (2.10) the new proposed expansion is 

U Asy(x) =

∑
∞

=−
−−∑

∞

=
−

0
))0(F

n
- )1(

 

)1(
 ))0(

0
)((

n

n
F

n

e

xn
F

n

n
xF

n
εεε

      (2.12) 

This is indeed a valid asymptotic expansion.  i.e.  u(x) ~uAsy.(x) 

Thus equation (2.12) is an asymptotic expansion of u(x) that is valid for     1x0 ≤≤ . 

 

 

FINITE DIFFERENENCE METHOD 

 

Consider the steady-state convection-diffusion problem 

Lu(x)=
)x(f)x('u)x(''u =+−  ε

  for     0<x<1                                                        (2.13) 

with   u(0) = 0, u(1)=0 

where 10 <<< ε , a(x) > 0 assumed to be in  [ ]1,0C
∞ . 

 Divide the interval [0, 1] into N the equidistant mesh points xi =ih for i=0, 1,2…..N 

where   h=1/N. Our aim is to compute approximate solution of (2.13) by introducing the 

finite difference methods. The central and forward difference schemes of first and second 

order derivatives of u are defined by 
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( )
h2

1i
u

1i
u

xu −
−

+=′   and  ( )
2h

1i
u

i
u2

1i
u

xu +
+−

−=′′                                               (2.14)  

Where u i  = u(xi). Using (2.14) in (2.13) for f(x) =1, we get 

1
h2

1i
u

1i
u

2h

1i
u

i
u2

1i
u

=−−++++−−ε−  ;        for  0<x<1 

The final difference scheme takes the form 

c
1i

ub
i

ua
1i

u =−−++                                                                                                                                      (2.15) 

Where 

          
2εh

2h
2

     and c =
2εh

2εh
, b=  

2εh

4ε
a

−−
+

−
=

                                               (2.16) 

The boundary conditions u (0) = u (1) =0 are represented by u0=0 and uN=0. Equation 

(2.15) represents a Tri-diagonal matrix of the form 

     DuA
rr

=                                                                                                                 (2.17) 

where the coefficient matrix A is of order (n-1). The Non-Homogeneous linear system 

(2.17) is solved by applying Thomas Algorithm. The main idea here is to select suitable 

values of a, b so that the coefficient Matrix A is a Monotonic -Matrix. 

The properties of Monotonic -Matrix are stated below. 

1) All the off-diagonal elements must be   either zeros or negative i.e. 0≤ija  for ji ≠ . 

2) The coefficient matrix must be a diagonally dominant Matrix. 

If these two conditions are satisfied then our numerical method is stable and consistent.  

The concept incorporated in this problem   reduces the oscillations in the computed 

solution. 

If d=
2εh

2h2

−
−

,    D =d[ 1,1,1, …, 1]
T
. 

The solution matrix    u= [u1, u2, …, uN-1]
T
.  Hence we have 
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To achieve the condition of M -matrix, the value of h is restricted as below 

                                                  ε2h <   , 

Since a and b are to be negative. This is the condition for convergence. 

Let us consider    ε =0.01, 0.05 with     h=0.01. Then the above inequality h < 2ε    is 

satisfied. Here x takes the values from 0 to 1 with step size 0.01.    By using these values 

in Thomas Algorithm we can get the computed values as presented in the Table 2.1and 

2.2 below and compared with the exact values with a specified parameter value of   e. 
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Case 1: εεεε = 10 
-2 

and h = 0.01 

Sl.No. 

Exact  

value   

(ui) 

Computed  

value( Ui) 
Sl.No 

Exact 

value  

(ui) 

Computed 

value(Ui) 

1 0.01000 0.010000 51 0.510000 0.510000 

2 0.020000 0.020000 52 0.520000 0.520000 

3 0.030000 0.030000 53 0.530000 0.530000 

4 0.040000 0.040000 54 0.540000 0.540000 

5 0.050000 0.050000 55 0.550000 0.550000 

6 0.060000 0.060000 56 0.560000 0.560000 

7 0.070000 0.070000 57 0.570000 0.570000 

8 0.080000 0.080000 58 0.580000 0.580000 

9 0.090000 0.090000 59 0.590000 0.590000 

10 0.10000 0.10000 60 0.600000 0.600000 

11 0.110000 0.110000 61 0.610000 0.610000 

12 0.120000 0.120000 62 0.620000 0.620000 

13 0.130000 0.130000 63 0.630000 0.630000 

14 0.140000 0.140000 64 0.640000 0.640000 

15 0.150000 0.150000 65 0.650000 0.650000 

16 0.160000 0.160000 66 0.660000 0.660000 

17 0.170000 0.170000 67 0.670000 0.670000 

18 0.180000 0.180000 68 0.680000 0.680000 

19 0.190000 0.190000 69 0.690000 0.690000 

20 0.200000 0.200000 70 0.700000 0.700000 

21 0.210000 0.210000 71 0.710000 0.710000 

22 0.220000 0.220000 72 0.719999 0.720000 

23 0.230000 0.230000 73 0.729999 0.730000 

24 0.240000 0.240000 74 0.739999 0.740000 

25 0.250000 0.250000 75 0.749999 0.750000 

26 0.260000 0.260000 76 0.759999 0.760000 

27 0.270000 0.270000 77 0.769999 0.770000 
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28 0.280000 0.280000 78 0.779999 0.780000 

29 0.290000 0.290000 79 0.789999 0.790000 

30 0.300000 0.300000 80 0.799999 0.800000 

31 0.310000 0.310000 81 0.809999 0.810000 

32 0.320000 0.320000 82 0.819999 0.820000 

33 0.330000 0.330000 83 0.829999 0.830000 

34 0.340000 0.340000 84 0.839999 0.840000 

35 0.350000 0.350000 85 0.849999 0.850000 

36 0.360000 0.360000 86 0.859999 0.859999 

37 0.370000 0.370000 87 0.869999 0.869999 

38 0.380000 0.380000 88 0.879999 0.879994 

39 0.390000 0.390000 89 0.889997 0.889983 

40 0.400000 0.400000 90 0.899994 0.899955 

41 0.410000 0.410000 91 0.909982 0.909877 

42 0.420000 0.420000 92 0.919948 0.919665 

43 0.430000 0.430000 93 0.929845 0.929088 

44 0.440000 0.440000 94 0.939537 0.937521 

45 0.450000 0.450000 95 0.948614 0.943262 

46 0.460000 0.460000 96 0.955843 0.941684 

47 0.470000 0.470000 97 0.957530 0.9202130 

48 0.480000 0.480000 98 0.942592 0.844665 

49 0.490000 0.490000 99 0.877777 0.622121 

50 0.500000 0.500000 100 0 0 

                                                              

                                                               Table. 2.1 
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Case ii: εεεε = 0.05 and h =0.01 

Sl.No. 
Exact value 

(ui) 

Computed  

value( Ui) 
Sl.No 

Exact value 

(ui) 

Computed 

value(Ui) 

1 0.01000 0.010000 51 0.509945 0.509900 

2 0.020000 0.020000 52 0.519932 0.519900 

3 0.030000 0.030000 53 0.529917 0.529900 

4 0.040000 0.040000 54 0.539899 0.539900 

5 0.050000 0.050000 55 0.549877 0.549900 

6 0.060000 0.060000 56 0.559849 0.559800 

7 0.070000 0.070000 57 0.569816 0.569800 

8 0.080000 0.080000 58 0.579775 0.579800 

9 0.090000 0.090000 59 0.589725 0.589700 

10 0.10000 0.100000 60 0.599665 0.599700 

11 0.110000 0.110000 61 0.609590 0.609600 

12 0.120000 0.120000 62 0.619500 0.619500 

13 0.130000 0.130000 63 0.629389 0.629400 

14 0.140000 0.140000 64 0.639253 0.639300 

15 0.150000 0.150000 65 0.649088 0.649100 

16 0.160000 0.160000 66 0.658886 0.658900 

17 0.170000 0.170000 67 0.668640 0.668700 

18 0.180000 0.180000 68 0.678338 0.678400 

19 0.190000 0.190000 69 0.687971 0.688000 

20 0.200000 0.200000 70 0.697521 0.697600 

21 0.210000 0.210000 71 0.706972 0.707000 

22 0.220000 0.220000 72 0.716302 0.716400 

23 0.230000 0.230000 73 0.725483 0.725600 

24 0.240000 0.240000 74 0.734483 0.734600 

25 0.250000 0.250000 75 0.743262 0.743400 

26 0.260000 0.260000 76 0.751770 0.751900 

27 0.270000 0.270000 77 0.759948 0.760100 
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28 0.279999 0.280000 78 0.767723 0.767900 

29 0.289999 0.290000 79 0.775004 0.775200 

30 0.299999 0.300000 80 0.781684 0.781900 

31 0.309999 0.310000 81 0.787629 0.787900 

32 0.319999 0.320000 82 0.792676 0.793000 

33 0.329998 0.330000 83 0.796627 0.797000 

34 0.339998 0.340000 84 0.799238 0.799700 

35 0.349998 0.350000 85 0.800213 0.800700 

36 0.359997 0.360000 86 0.799190 0.799800 

37 0.369997 0.370000 87 0.795726 0.796400 

38 0.379997 0.380000 88 0.789282 0.790100 

39 0.389995 0.390000 89 0.779197 0.780100 

40 0.3999994 0.400000 90 0.764665 0.765700 

41 0.409992 0.410000 91 0.744701 0.745800 

42 0.419991 0.420000 92 0.718103 0.719400 

43 0.429989 0.430000 93 0.683403 0.684800 

44 0.439986 0.440000 94 0.638806 0.640300 

45 0.449983 0.450000 95 0.582121 0.583700 

46 0.45998 0.460000 96 0.510671 0.512300 

47 0.4699750 0.470000 97 0.421188 0.422800 

48 0.47997 0.480000 98 0.309680 0.311200 

49 0.489963 0.490000 99 0.171269 0.172600 

50 0.499955 0.499900 100 0 0 

 

Table. 2.2 
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                                                                  Figure. 2.2 

 

RESULTS AND DISCUSSION 

 

The computed  solution is fairly close to the exact solution in the interval (0,1) and  in 

the neighborhood of x=1  the computed solution   slightly deviates  from  the  Exact 

solution   because  at x=1 there is a  boundary layer. The solution may be termed as 

smooth solution in the interval (0,δ) where the exact and the computed values of u are 

very close to each other and the remaining part of solution is called asymptotic solution.  

Geometrically near at x=1 there is a   chaotic behavior.  It means we can observe finitely 

many oscillations near x=1 but by M-Matrix criteria minimizes these un-even 

oscillations. Here boundary layer dies off rapidly as h becomes small. u(x) can be written 

as the sum of a well–behaved term and a boundary layer term. This decomposition of u is 

visible in the Tables 2.1, 2.2.  The solution has certain lower–order derivatives bounded 

independent of the perturbation parameter. If other finite difference schemes are taken, 

we can observe many oscillations in the solution which are not expected in the exact 

solution. 

This above numerical method indicates if there is too little diffusion then the 

computed solution is often oscillatory, while if there is too much diffusion, then the 

computed layers are smeared. 

               ------ Computed solution 

               ____ Exact solution  

0.2 0.4 0.6 0.8 1 
x 

0.2 

0.4 
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0.8 

u 
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CONCLUSIONS 

 

Steady state convection –diffusion problem is solved in the one-dimensional space by 

using Finite difference method. The solution of the problem is also compared with the 

exact solution.  For convergence criteria there is a condition established by the help of 

Monotonic Matrix. The monotonic matrix is the coefficient matrix of the system of 

equations (2.15) appeared after discretization.  The numerical results are very fair upto 

the reasonable accuracy in the smooth region. In the boundary layer region also we can 

observe that analytical solution very fairly close to the computed solution.  For very 

lower values of the mesh we can get a stable and convergent solution. Asymptotic 

analysis is also made to test the nature of the problem (2.1) and noticed that there is a 

right boundary layer near the argument x=1. By enlarge we observed the equation (2.1) is 

class of singularly perturbed problem so that in the inner region there are some possible 

oscillations in the computed solution. 
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CHAPTER-3 

 

UNIFORMLY CONVERGENT SCHEME FOR CONVECTION –DIFFUSION 

PROBLEM 

 

In this chapter a study of   uniformly convergent method proposed by Il’in –Allen-

Southwell scheme was made. A condition was contemplated for uniform convergence in the 

specified domain. The scheme developed is uniformly convergent for any choice of the 

diffusion parameter. The method provides a first- order uniformly convergent method with 

discrete maximum norm. Then an analysis carried out by [58] was employed to check the 

validity of solution with respect to physical aspect and it was in agreement with the analytical 

solution. The uniformly convergent method gives better results than the finite difference 

methods. The computed and plotted solutions of this method are in good agreement with the 

exact solution. 

 

INTRODUCTION 

Consider the elliptic operator whose second order derivative is multiplied by a 

parameter ε that is close to zero.  These derivatives model diffusion while first-order 

derivatives are associated with the convective or transport process.  In classical problems ε is 

not close to zero.  To summarize when a standard numerical method is applied to a 

convection-diffusion problem, when there is too little diffusion then the computed solution is 

often oscillatory. There is a lot of work in literature dealing with the numerical solution of 

singularly perturbed problems, showing the interest in this nature of problems in Kellog and 

Tsan [10]. 

We can see that the solution of this problem has a convective nature on most of the 

domain of the problem, and the diffusive part of the differential operator is influential only in 

the certain narrow sub-domain.  In this region the gradient of the solution is large. This 

nature is described by stating that the solution has a boundary layer. 
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MOTIVATION  

The numerical solution of convection-diffusion problems dates back to the 1950’s [4] 

but only in the 1970s it did acquire a research momentum that has continued to this day.  In 

the literature this field is still very active and as we shall see more effort can be put in. 

Perhaps the most common source of convection-diffusion problem is the Navier – Stokes 

equation having nonlinear terms with large Reynolds number.  

 In this chapter, the diffusion coefficient ε is a small positive parameter and coefficient 

of convection a(x) is continusely differentiable function. Under these assumptions, 

Consider the convection –diffusion problem 

1x0for   f(x)  (x)b(x)  (x)'a(x)  (x)''ε-   (x)u L <<=++= uuu  With the boundary 

conditions                    u (0) =u (1) = 0                                                                                (3.1) 

where 0 < ε <<1, a(x) >α > 0 and b(x) ≥ 0 on [0, 1], we also assume   that   a(x) ≤1 for   

stable solution in the computation.  The above problem is solved by the method proposed by 

the Il’in –Allen uniformly convergent method.  The convergence   criteria are realized 

through computation, based on explanation given by Roos et. al. [59]  for lower values of the 

diffusion coefficient.  The reciprocal of the diffusion coefficient is called the Peclet number. 

For a finite Peclet number the solution patterns matches with the exact solution. 

 

Construction of a Uniformly Convergent Method 

We describe a way of construction of uniformly convergent difference scheme.  We 

start with the standard derivation of an exact scheme for the convection-diffusion problem 

(3.1).Introduce the formal adjoint operator L
*
 of L and for the sake of convenience select b=0 

in (3.1) 

Let
i

g  be local Green’s function of   L
*
 with respective to the argument xi  ; i.e. 

  ) x
1i

 ,x  i
(  )

i
x,

1-i
(xin   0  g'

ia g ''
iε -  

i
g L

*

+
=−= U                                                  (3.2) 

Let us impose boundary conditions 

 0   )
1i

(x
i

g   )
1i

(x
i

g =+=−                                                                                        (3.2 (a)) 

and impose additional conditions 
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Since  'u  is continuous on (xi-1 , xi+1) ,  we have 
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The difference scheme of equation (3.2) is exact. We can evaluate each  '
i

g   exactly 

The solution of the equation (3.2) is given by 
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Here there are 4 unknowns 'c , ' c, ,c  c 
2121
  requiring 4 equations 
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and, from continuity of gi   at x=xi 
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On imposing boundary conditions (3.5) and (3.6) on (3.4(a)), (3.4(b)) it can be seen 
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On differentiation of equations (3.4(a)), (3.4(b)) 
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Then the equation (3.7) can be written in the following form 
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On assumption that  
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Hence on transformation of the equations (3.9) to (3.12) in to the equations (3.13) to (3.16) 
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On insertion of (3.15) into the equation (3.16) we can get  
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Subtracting the equation (3.14) from the equation (3.13), then by using equations (3.15) & 

(3.17) it may be obtained 
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From (3.18) it follows 
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Again employing the value of  c2 in (3.13) the value of  c1 can be obtained as 

) iρ-e e
 iρ(

1iρe
 

a

1
  c

1

−

−=                                                                                    (3.21) 

Next the value of  
1

c   is used in (3.17) to obtain 'c
1

 

                      

)e
 iρ

e
 iρ(

1 - iρe
 

a

1
 ' c

1

−
−

−
=                                                                      (3.22) 

Now on imposition of equations (3.19) to (3.22), on (3.4(a)), (3.4(b))  they may be rewritten 

as 
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The derivatives of equations (3.23(a)) , (3.23(b)) are 
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Now by inserting values of +
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g and  −
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g  from (3.24(a)), (3.24(b)) in (3.2(a)) & (3.2(b)) it 
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Finally, it can be represented as follows 
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here         
ε

ah
  

i
ρ = . 

The equation (3.25) is the Il’in-Allen-Southwell scheme. 

 This method is tested for a linear problem by applying a mixture of perturbation 

parameter values with in the defined range. It is observed from the numerical results that 

Il’in-Allen scheme is converging uniformly in the defined domain.  Especially in the 
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boundary layer region, it is appreciable thing that the scheme is uniformly converging to the 

exact solution.   

For testing the algorithm outlined above we are considered the two-point boundary value 

problem          2x   )(' (x)'' =+− xuuε with u(0) = u(1) = 0                                           (3.26) 

is considered with    0 < 1 )( ≤xa  so that a right-boundary layer exists.   

The analytical solution of (3.26) is 
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 The computational method is executed with various choices of the diffusion 

coefficient by applying forward difference method, upwind method, central difference 

method and the Il’in-Allen scheme. The results obtained are presented in the table 3.1(a) to 

3.1(d). 
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Case 1: 

ε =0.05    

                                 

X 
Forward 

scheme 

Backward 

scheme 

Central 

Scheme 

Allen-Il’in 

scheme 
Exact solution 

0 0 0 0 0 0 

0.01 0.001000 0.001200 0.001100 0.001103 0.0010999 

0.02 0.002200 0.002600 0.002400 0.002407 0.0023999 

0.03 0.003600 0.004200 0.003900 0.005613 0.0038999 

0.04 0.005200 0.006000 0.005600 0.005613 0.005599 

0.05 0.007000 0.008000 0.007500 0.007517 0.0074999 

0.06 0.009000 0.010200 0.009600 0.009620 0.0095999 

0.07 0.011200 0.012600 0.011900 0.011923 0.0118999 

0.08 0.013600 0.015200 0.014400 0.014427 0.0143999 

0.09 0.016200 0.018000 0.017100 0.017130 0.0170999 

0.1 0.019000 0.02100 0.020000 0.020033 0.019999 

0.2 0.058000 0.062000 0.060000 0.060067 0.06509985 

0.3 0.123999 0.122998 0.119999 0.120100 0.127098 

0.4 0.204997 0.203985 0.19995 0.200129 0.209091 

0.5 0.305981 0.304899 0.299960 0.300127 0.2999500 

0.6 0.426848 0.425363 0.419700 0.419895 0.41963099 

0.7 0.566617 0.563036 0.557771 0.557961 0.5572733 

0.8 0.716180 0.703420 0.703422 0.703453 0.6998527 

0.9 0.790694 0.756763 0.776690 0.756044 0.75113119 

0.91 0.780071 0.745514 0.768388 0.767636 0.737271 

0.92 0.762193 0.728374 0.754197 0.753337 0.7463138 

0.93 0.735194 0.704127 0.732763 0.731799 0.7166433 

0.94 0.696747 0.671311 0.702433 0.701373 0.706286 

0.95 0.643937 0.628171 0.661185 0.660049 0.6866133 

0.96 0.573125 0.572603 0.606549 0.605369 0.646286 

0.97 0.479760 0.502081 0.535505 0.534331 0.592832 

0.98 0.358154 0.413575 0.444363 0.44321 0.4342072 

0.99 0.20119 0.167335 0.182736 0.182179 0.17849617 

1 0 0 0 0 0 

                      

                                                               Table 3.1 (a) 
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Figure. 3.1(a) 
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Case: 2 

When ε = 10
- 3 

 : 

x 
Forward 

scheme 

Backward 

scheme 

Central 

Scheme 

Allen-Il’in 

scheme 

Exact 

solution 

0 0 0 0 0 0 

0.01 -0.12447 0.000220 0.000120 0.00020 0.00012 

0.02 -0.99928 0.000640 0.000440 0.000600 0.00044 

0.03 -1.01274 0.001260 0.000960 0.001200 0.00096 

0.04 -1.01058 0.002080 0.001680 0.002 0.00168 

0.05 -1.00993 0.003100 0.002600 0.0030 0.002600 

0.06 -1.00080 0.004320 0.003720 0.04200 0.0037199 

0.07 -0.00858 0.005740 0.005040 0.005600 0.005040 

0.08 -0.99616 0.007360 0.006560 0.007200 0.006560 

0.09 -0.99354 0.009180 0.008280 0.009000 0.00828 

0.1 -0.99072 0.011200 0.010200 0.01100 0.01020 

0.2 -0.97362 0.042400 0.040400 0.042000 0.04040 

0.3 -0.92442 0.093600 0.090600 0.093000 0.0906 

0.4 -0.85522 0.164800 0.160800 0.164000 0.160800 

0.5 -0.76602 0.256000 0.251000 0.255000 0.251000 

0.6 -0.65682 0.367200 0.361200 0.366001 0.3611999 

0.7 -0.52762 0.498400 0.491404 0.497001 0.49140 

0.8 -0.37842 0.649600 0.641805 0.648001 0.641600 

0.9 -0.20922 0.820800 0.823617 0.819001 0.81180 

0.91 -0.19120 0.839020 0.812195 0.837201 0.829920 

0.92 -0.17298 0.857440 0.874828 0.855601 0.848240 

0.93 -0.15456 0.876060 0.826879 0.874201 0.866760 

0.94 -0.13594 0.894880 0.945302 0.893001 0.885480 

0.95 -0.11712 0.913899 0.814667 0.912001 0.904400 

0.96 -0.00981 0.933114 1.058120 0.931201 0.92352 

0.97 -0.07888 0.952469 0.740940 0.950601 0.9428399 

0.98 -0.05946 0.971384 1.265210 0.970201 0.9623599 

0.99 -0.02002 0.91816 1.683413 0.990001 0.9820345 

1 0 0 0 0 0 

 

                                                            Table.3.1 (b) 
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Figure. 3.1(b) 
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When    ε = 10
 -4

  

x 
Forward 

scheme 

Backward 

scheme 

Central 

Scheme 

Allen-Il’in 

scheme 

Exact 

solution 

0 0 0 0 0 0 

0.01 -1.020404 0.000202 -0.03588 0.000200 0.000102 

0.02 -1.009895 0.000604 0.00187 0.000600 0.000404 

0.03 -1.009597 0.001206 -0.03661 0.001200 0.000906 

0.04 -1.008994 0.002008 0.00466 0.002000 0.001608 

0.05 -1.008192 0.003010 -0.03666 0.003000 0.0025100 

0.06 -1.00719 0.004212 0.00839 0.004200 0.0036199 

0.07 -1.005988 0.005614 -0.03605 0.007200 0.0049140 

0.08 -1.004586 0.007216 -0.01306 0.007200 0.006416 

0.09 -1.002984 0.009018 -0.03479 0.009000 0.00818 

0.1 -1.001182 0.011020 0.01869 0.011000 0.01002 

0.2 -0.972162 0.042040 0.06165 0.042000 0.040040 

0.3 -0.923142 0.093060 0.13098 0.093000 0.09006 

0.4 -0.854122 0.164080 0.22981 0.164000 0.16008 

0.5 -0.765102 0.255100 0.36280 0.255000 0.250100 

0.6 -0.656082 0.366120 0.53694 0.366000 0.360120 

0.7 -0.527062 0.497140 0.76261 0.497000 0.490140 

0.8 -0.378042 0.648100 1.05533 0.648000 0.640160 

0.9 -0.209022 0.819180 1.43826 0.819000 0.81018 

0.91 -0.191020 0.837382 0.13857 0.837200 0.828282 

0.92 -0.172818 0.855784 1.52845 0.855600 0.846584 

0.93 -0.154416 0.874386 0.11939 0.874200 0.865086 

0.94 -0.135814 0.893188 1.62392 0.893000 0.883788 

0.95 -0.117012 0.912190 0.09635 0.912000 0.902690 

0.96 -0.098010 0.931216 1.72504 0.931200 0.921792 

0.97 -0.078808 0.950616 0.06906 0.950600 0.941094 

0.98 -0.059406 0.970216 1.83223 0.970200 0.9605959 

0.99 -0.020002 1.008987 0.03709 0.990000 0.980298 

1 0 0 0 0 0 

 

                                                              Table. 3.1 (c)  
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Figure. 3.1(c) 

 

 

 



54 

 

 

 

Case: 4: 

When ε = 10
 -5

 

 

x 
Forward 

scheme 

Backward 

scheme 

Central 

Scheme 

Allen-Il’in 

scheme 

Exact 

solution 

0 0 0 0 0 0 

0.01 -1.011037 0.000200 -0.818348 0.00200 0.000100 

0.02 -1.009825 0.000600 0.003681 0.000600 0.0121022 

0.03 -1.009426 0.001201 -0.820841 0.001200 0.0144024 

0.04 -1.008825 0.002001 0.008188 0.002000 0.0169026 

0.05 -1.008025 0.003001 -0.822561 0.003000 0.0196028 

0.06 -1.007025 0.004201 0.013522 0.004200 0.022503 

0.07 -1.005825 0.005601 -0.082350 0.005600 0.0256032 

0.08 -1.004424 0.007202 0.019682 0.007200 0.0289034 

0.09 -1.002824 0.009002 -0.823680 0.009000 0.0324036 

0.1 -1.001024 0.011002 0.026669 0.01100 0.0361028 

0.2 -0.972021 0.042004 0.074019 0.042000 0.0841058 

0.3 -0.923018 0.093006 0.142077 0.193000 0.1521078 

0.4 -0.854015 0.164008 0.230871 0.264000 0.2401097 

0.5 -0.765012 0.255010 0.340432 0.355000 0.3481117 

0.6 -0.656009 0.366011 0.470792 0.466000 0.4761138 

0.7 -0.527007 0.497013 0.621983 0.697000 0.6241158 

0.8 -0.378005 0.648014 0.794038 0.74800 0.7921178 

0.9 -0.209002 0.819016 0.986993 0.819000 0.81001 

0.91 -0.191002 0.837216 -0.168016 0.837200 0.827004 

0.92 -0.172802 0.855616 1.028095 0.855600 0.848282 

0.93 -0.154402 0.874216 -0.135937 0.874200 0.8650680 

0.94 -0.135801 0.89016 1.070035 0.893000 0.873788 

0.95 -0.117001 0.912016 -0.103095 0.912000 0.900691 

0.96 -0.098001 0.931216 1.112814 0.931200 0.920006 

0.97 -0.078801 0.950616 -0.069491 0.950600 0.940002 

0.98 -0.059401 0.970216 1.156430 0.970200 0.9600231 

0.99 -0.039800 1.008987 -0.035126 0.99000 0.980098 

1 0 0 0 0 0 

 

                                                                   Table. 3.1(d)  
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Figure. 3.1 (d) 

 

 

Error Analysis: 

  The present scheme is first-order uniformly convergent with the discrete   maximum norm. 

 

 

 

The region of the solution u is divided into two parts 

1) Smooth region with bounded derivatives. 

2) Boundary layer region with chaotic behavior where in u = v+z ,  v is a boundary layer 

function and z is the smooth function.  The bound on the smooth function    z
j

 has a 

factorε j−1 . 

hC   )u(Max
i

≤− iuix
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The calculation of   
i

z- )xi( z  is now considered. The corresponding consistency 

error τi  is estimated with the help of Taylor series, proposed by H.G. Roos et. al. [59] 

which gives the inequality 

dt )   )(t  z '' a   
1i

x

1i
x

  (t) z3(εC   τ  i +∫
+

−

≤  

 

 

) 
ε

i
x1

 
0

a ( exp )
ε

h
0

a
sinh(  CCh  

−
−+≤  

An application of the discrete comparison principle indicates the increase of power of ε 

i.e., 
i

z- )
i

(x z  ) 
ε

i
x1

 
0

a ( exp )
ε

h
0

a
sinh(  CCh  

−
−+≤   for i= 1,2 ,3,……n 

for h≤ε  that can be easily obtained 

Ch i
z- )xiz(  ≤ . 

In the second case  ε≤h  , using the inequality  0for tct   te1 >≤−−  the desired estimate   

can be put as  Ch i
z- )xiz(  ≤  

Similarly  Ch  
ε h

h2
 C i

v- )xiv(  ≤
+

≤   as proposed by Kellogg [32, 34] 

This shows that Il’in-Allen scheme is uniformly convergent of first order. 

 In the above scheme the value of a(x) the convection coefficient is less than or equal 

to unity,  then the scheme converges faster to the exact solution. 

 

 

 

∫
+

−

−−+≤
1i

x

1i
x

)dt
ε

t-1
 

0
aexp( 1ε CCh  
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RESULT ANALYSIS 

 

We have solved the  proposed convection-diffusion problem which is linear and has a 

right boundary layer region by using forward difference scheme, upwind scheme, central 

difference scheme and Il’in- Allen scheme by selecting  the fine mesh size h = 0.01 and  

allowed the diffusion coefficient  to take different values. We have selected ε = 0.05, 0.001, 

0.0001, 0.00001. 

1) For ε =0.05 all the schemes behave similarly in the smooth region as well as in the 

boundary layer region. 

2) For ε = 0.001 forward scheme is not matching with the exact solution , upwind 

scheme converging to exact solution  well and the central difference scheme converges in the 

smooth region and oscillates in the boundary layer.  where as Il’in scheme converges 

uniformly in the entire region. 

3) For ε = 0.0001, 0.00001 forward scheme diverges, central scheme oscillates.  

Upwind scheme has produced good numeric results in the specified domain.  But at the 

boundary i.e. near to the point x=1 the upwind scheme is not matching with the exact 

solution. The solution of the upwind scheme is not uniformly convergent with  the discrete 

maximum norm, where as the proposed scheme is uniformly convergent of first order even 

for lower values of ε through out the domain. 

4) For finite value of the Peclet number Il’in-Allen scheme behaves well with the 

exact solution in the region [0,1]. 

5) The standard finite difference scheme of upwind and central scheme on equally 

spaced mesh does not converge uniformly.  Because, the point wise error is not necessarily 

reduced by successive uniform   improvement of the mesh in contrast to solving unperturbed 

problems.  The standard central difference scheme is of order O(h
2
). It is numerically 

unstable in the boundary layer region and gives oscillatory solutions unless the mesh width is 

small comparatively with the diffusion coefficient but it is practically not possible as 

diffusion coefficient is very small. 

 6)  For any value of x in [0,1] , a(x) ≤1 Il’in- Allen scheme converges uniformly. This 

has been thoroughly verified through computation. 
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CONCLUSIONS  

 

 In this chapter a method developed by Il’in- Allen-Southwell  scheme is applied to a 

convection-diffusion problem which is linear in nature.   It has right-boundary layer near the 

argument x=1.  This method is employed to the two-point boundary value problem with 

Dirichlet’s boundary conditions. The same problem is also solved numerically by Forward 

difference method, central difference method and upwind scheme.  It is noticed that Il’in-

Allen scheme converges uniformly throughout the region for any choice of the diffusion 

coefficient for a finer mesh.  The other Finite difference methods do not converge uniformly. 

The advantage of this method is that, even in the boundary layer region it has uniform 

convergence.  For mid values of the perturbation parameter the convergence in the computed 

solution is a little bit slower comparatively with the other perturbed parameter values.  In this 

method we contemplated a condition on convection coefficient so that the proposed method 

is fast convergent to the exact solution.  
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CHAPTER-4 

 

GALERKIN METHOD FOR SOLVING CERTAIN CLASS OF SINGULARLY  

PERTURBED TWO POINT BOUNDARY VALUE PROBLEMS WITH CUBIC  

B-SPLINES 

 

 

INTRODUCTION 

Singular perturbed two-point boundary value problems have been solved by Galerkin 

method with cubic B-Splines as basis functions.  The basis functions have been redefined 

into a new set of basis functions which vanish on the boundary where the Dirichlet type of 

boundary conditions is defined. A finer mesh has been taken near and around  δ where the 

left boundary layer is located.  Several examples including linear and nonlinear have been 

considered for testing the efficiency of the proposed method. 

Differential equations occur very frequently in the mathematical modeling of physical 

problems in Science and Engineering.  Since exact solutions for most of these problems are 

not available, a resort to the approximation methods for getting the solution of such problems 

is unavoidable.  The availability of high speed digital computers has made it possible to take 

such a task when the approximation method involves numerical computation.   The most 

commonly employed approximate methods, for solving such type of problems are the finite 

difference method and the finite element method.  Even though the finite element method is 

somewhat difficult than the finite difference method from the point of view of computer 

programming, it has certain inherent advantages, namely the approximation of solutions can 

be obtained easily in more complicated regions etc. 

The flexibility of the finite element method lies in the replacement of the domain of a 

problem by a mathematical model with a finite number of sub-domains which constitute the 

given domain.  Any physical problem, mathematically modeled, can be solved by the finite 

element method. 

In Galerkin method, the residual is made orthogonal to the basis functions.  In a 

Galerkin method, a weak form of approximate solution for a given differential equation is 

exists and unique under appropriate conditions irrespective of properties of a given 
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differential operator and weak solution is also a classical solution of the given differential 

equation provided sufficient attention is given to the boundary conditions [20, 55].  In this 

chapter we employed Galerkin method to approximate the solution of a given differential 

equation. 

Many research workers use the Galerkin method for solving boundary value problems 

and initial-boundary value problems [20, 17].  In most cases the solution is a smooth function 

which is piecewise polynomial.  To find approximate numerical solution to a given 

differential equation by Galerkin method, one needs a set of basis functions belonging to the 

space which contains  all measurable admissible functions that vanish on the boundary of the 

domain, where the Dirichlet type of boundary conditions were given  on the given 

differential equation. 

In this chapter, we employed Galerkin method to solve a certain class of singular 

perturbation problems with B-splines as basis function.  Infact, any differential equation 

whose solution changes rapidly in some parts of the interval is generally known as singular 

perturbation problem and also as boundary layer problem. A boundary layer by definition is a 

narrow region, where the solution of a differential equation changes rapidly.  Further the 

thickness of the boundary layer tends to zero as ε→0. 

Consider the following linear singular perturbed two-point boundary value problem 

        1x0  ; (x) b(x)y(x) (x)'y a(x)  (x)
''

y ε <<=++ c  

                            with y(0) = y0 and y(1) = y1 

where ε is small positive parameter ( 0<  ε << 1 ) and y0 , y1 are given constants, a(x) , b(x) 

and c(x) are assumed to be continuously differentiable  functions in [0,1]. Further, we assume 

that a(x) ≥ M>0 throughout the interval [0, 1] where M is some positive constant.  This 

assumption solely implies that the boundary layer will be in the neighborhood of x=0. 

Existing numerical methods produce good results only when we take step length of interval 

 h ≤ ε .  This is very costly and time consuming process.  Hence the researchers are 

concentrating on developing methods, which can work with reasonable step length h.  For 

this, nowadays researchers are adopting one of the following methods. 

 (i) The interval is subdivided into two regions [0,δ ] and [δ,1] , where  δ is the point 

near which the boundary layer is located.  The region [0,δ] is called inner region and the 



61 

 

 

 

region [δ,1] is called outer region.  The problem in the inner region is treated as an initial 

value problem and the problem in the outer region is treated as a boundary value problem.  

The initial value problem in the inner region problem is solved and terminal boundary 

condition is obtained.  Using this terminal boundary condition, the boundary value problem 

in the outer region problem is solved. 

 (ii)  Using the variable mesh, one can take finer mesh around and near the point 

where the boundary layer is located. 

Since the finite element method can be easily adaptable with variable mesh, we intend 

to use finite element method to solve the given singular perturbation problem. 

 For the case of single differential equation, it is shown in Douglas and Dupont[17] 

that the cubic B-splines yield  4th order accurate results.  Accordingly, B-splines as basis 

functions have been used by us in our work. 

 The existence of the cubic- spline interpolate S(x) to a function f(x) in closed interval 

[0,1] for spaced knots 0 = x0 <x1 < x2 < x3 < …. < x n-2 < x n-1 < x n =1 is established by 

constructing it.  The construction of S(x) is done with the help of cubic B-Splines. Introduce 

six additional knots x -3 , x -2 , x -1 , x n+1 , xn+2 and x n+3  such that 

x -3 < x -2 < x -1< x 0   and  x n+3 > xn+2 > x n+1 > x n. 

Now the cubic B-splines Bi (x), given in [13], are defined by 
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It can be shown that the set {B -1(x), B 0 (x), B 1(x), B 2 (x),….. B n (x), B n+1(x)} 

forms a basis for the space S 3 ( π ) of cubic polynomial splines [52]. Schoenberg [61] has 

proved that the cubic B-splines are the unique non-zero splines of smallest compact support 

with knots at    x -3 < x -2 < x -1< x 0  <  x n  < xn+1  < xn+2  <  xn+3. 

 Any cubic spline defined with a unique set of given knots [3] can be uniquely 

expressed as a linear combination of B-spline basis set: 

{B -1(x), B 0 (x), B 1(x) , B 2 (x) , ….. B n (x), B n+1(x)}  

 We develop a method based on Galerkin method with B-splines as basis functions for 

solving a general linear singular perturbed two point boundary value problem with left 

boundary layer by considering 

   1x0  ; (x)  b(x)y(x) (x)'y a(x)  (x)
''

y ε <<=++ c  

With y(0) = y0 and y(1) = y1 

Where ε is small positive parameter (0< ε << 1) and y0 , y1 are given constants and a(x) > 0 

throughout the interval [ 0,1 ]. 

 We consider some examples of linear and nonlinear singular perturbation problems 

with left boundary layer.  The solution for a nonlinear problem is obtained as the limit of 

solution of a sequence of linear problems generated by quasi-linearization technique [9]. The 

solution obtained, by the method developed in this chapter, for the considered examples have 

been compared with the exact solutions.  We observed that the approximation solutions 

obtained by the developed method are in good agreement with the exact solutions of the 

problems. 

 

LINEAR SINGULAR PERTURBED TWO-POINT BOUNDARY VALUE 

PROBLEMS WITH LEFT BOUNDARY LAYER 

 

We now develop a Galerkin method with B-splines as basis functions for solving 

linear singular perturbed two-point boundary value problems with left-boundary layer. 

1   x c(x) ;  0b(x)y(x) (x) 'a(x) y(x)  ''ε y <<=++                              (4.1) 

With y(0) = y0 and y(1) = y1                                                        (4.2) 
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Where  ε is a small positive parameter( 0<  ε << 1 ) and y0 , y1 are prescribed values and 

a(x) >0 throughout the interval [ 0,1 ]. 

We subdivide the interval [ 0, 1] into  subintervals by the set of n+1 distinct grid points x0, x1 

, x 2 ,………..x n  such that  0 = x 0 < x 1 < x 2 < ……..< x n  = 1 

 For the system (4.1) and (4.2) the boundary layer will be in the neighborhood of x =0. 

Suppose that the boundary layer is located around and near the point x = δ.  Take the finer 

mesh around and near x= δ such that the minimum of the step lengths of the subintervals is 

greater thanε.  The procedure for finding the parameter δ is discussed in [24].  Introduce six 

additional knots x -3 , x -2 , x -1 , x n+1 , xn+2 and x n+3  such that 

x -3 < x -2 < x -1< x 0   and  x n+3 > xn+2 > x n+1 > x n. 

 With these grid points, the basis set of cubic B-splines {B -1(x), B 0 (x), B 1(x), .. B 

n+1(x)} has been defined.  Let the approximate solution to the system (4.1) and (4.2) be given 

by 

∑
+

−=
=

1n

1i
                                                                                        (x)

i
B 

i
αy(x)                      (4.3)                          

              where 
 i

α  are the nodal parameters to be determined.  

Since we want to solve the system (4.1) and (4.2) by the Galerkin method with cubic  

B-splines as basis functions, the cubic B-splines should vanish on the boundary where the 

Dirichlet type of boundary conditions is mentioned. But in this set of cubic B-spine basis 

functions: B -1(x), B 0 (x), B 1(x), B 2 (x), ….. B n (x) and B n+1(x) are not vanishing at one of 

the boundary points.  So there is a necessity of redefining the basis functions into a new set 

of basis functions which vanish on the boundary since Dirichlet type of boundary conditions 

are specified on the boundary. 

 Using the definition of B-splines and the boundary conditions (4.2), we get the 

approximation y(x) , given by the equation (4.3) , at the boundary points as 

             y  )(xB α  )(xB α  )(xB α  )y(x  y(0) 001100001-1-0 =++==                                           (4.4) 

                                                       and 

      y  )(xB α  )(xB α  )(xB α  )y(x  y(1) 1n1n1nnnnn1-n1-nn =++== ++                                         (4.5) 

From the above equations we get  
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Substituting these values of 1−α  and  1+nα  in (4.3) we get the approximation for y(x) as  

(x)
n

0j
j

B
~

j
αw(x)y(x) ∑

=
+=                 (4.6) 
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2n,2,3,......ifor,(x)
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−==         (4.8(c)) 
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−=                                    (4.8(e)) 

Here the new set of basis functions are jB
~

(x), j= 0,1,2,3….., n and they vanish on the 

boundary.  w(x) defined in (4.7) takes care of the boundary conditions ( 4.2 ) 

Applying the Galerkin method with the redefined set of basis functions  

jB
~

(x) , j =0 ,1 ,2 ,…….n  to the system  (4.1) and (4.2)  we get 

                       ..n       0,1,2.....ifor

(x).B
~

c(x)dx}(x)B
~

y(x)b(x)(x)B
~

(x)ya(x)dx(x)B
~

(x)yε{
n

0

n

0

x

x

iii

x

x

'

i

' '

=

=++ ∫∫                  (4.9) 
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Integrating by parts the first term on the left hand side of the above equation 

,.....n3,2,1,0ifor

nx

0
x

nx

0
x

dx
dx

i
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d
(x)'yεdx

dx

i
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d
(x)'yε
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(x)''yε
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∫ ∫−=−∫ =
      (4.10) 

Substituting (4.10) in (4.9) we get 
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The above equation can be written as 
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The system of equations (4.12) can be written in the matrix form as              

fαK =                                       (4.13)    

dx](x)
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(x)
i

B
~

d

dx

dw(x)
ε(x)

i
B
~

c(x)
n

x

0
x

i
f }{ −−+∫=           (4.15) 
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A typical integral element in the matrix K, given in equation (4.14) is 

∫
+

=∑
−

=

1m
x

m
x

dxz(x)(x)
j

s(x)
i

s
m

Iwhere
1n

0m
m

I                                                 (4.17) 

and  )x(
j

s,)x(
i

s  are the basis functions (x)
i

B
~

 or their derivatives  

It may be noted that   mI = 0,  if (     )x,x()x,x()x,x 1mm2j2j2i2i φ=++−+− II  

Thus the stiff matrix K is a seven diagonal band matrix.  The integral element (4.17) 

is evaluated by using the four Point Gauss-Legendre quadrature formula.  The nodal 

parameter vector α  has been obtained from the system (4.13) by using the band matrix 

solution package. 

To test the efficiency of the proposed method described in this chapter for solving the 

singular perturbation two point boundary value problems with left boundary layer, we 

considered some linear and non-linear problems.  In all the selected examples, we have taken  

           h = min (lengths of subintervals of the given domain). 

 

Example 4.1 

Consider the following homogeneous singular perturbation problem 

1x0,0)x(y)x('y)x(''y ≤≤=−+ε                                                  (4.18) 

1)1(yand1)0(ywith ==                                           (4.19) 

The exact solution for the above system is given by 

)e 1m
e 2m

(

x2m
e )

x1m
e(1

x1m
e1)

 2m
(e

y(x)
−

−+−=                                                (4.20) 

where 
ε

ε
ε

ε
2

411
2

,
2

411
1

+−−=++−= mm  

We have solved the problem (4.18) and (4.19) with ε = 10
-3

 and ε =10
-4

 respectively.  The 

approximate solutions obtained by the proposed method are compared with the exact solution 

in tables 4.1 (a) and 4.1 (b) for ε = 10
-3

 and ε =10
-4

 respectively.  From the results we can 

conclude that the approximation is in good agreement with the exact solution. 
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ε = 10
-3         

h= 0.0015         δδδδ = 0.01 

x Approximate solution Exact solution 

0.00000 1.0000000 1.0000000 

0.00200 0.4568041 0.4543111 

0.00400 0.3800441 0.3812461 

0.00600 0.3728526 0.3720173 

0.00750 0.3709753 0.3713630 

0.00900 0.3718539 0.3716499 

0.01050 0.3720383 0.3721471 

0.01200 0.3727582 0.3726917 

0.01350 0.3732188 0.3732477 

0.01500 0.3738213 0.3738067 

0.01750 0.3747340 0.3747413 

0.02000 0.3756694 0.3756784 

0.04000 0.3832526 0.3832599 

0.06000 0.3910117 0.3909945 

0.08000 0.3988778 0.3988851 

0.10000 0.4069450 0.4069350 

0.15000 0.4277724 0.4277777 

0.20000 0.4497036 0.4496879 

0.25000 0.4727157 0.4727203 

0.30000 0.4969481 0.4969324 

0.35000 0.5223812 0.5223845 

0.40000 0.5491560 0.5491404 

0.45000 0.5772646 0.5772666 

0.50000 0.6068492 0.6068334 

0.55000 0.6379137 0.6379146 

0.60000 0.6706011 0.6705877 

0.70000 0.7410415 0.7410401 

0.80000 0.8189113 0.8188942 

0.90000 0.9049323 0.9049277 

1.00000 1.0000000 1.0000000 

 

Table- 4.1(a) 
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ε = 10
-4        

h= 0.00015         δδδδ = 0.009:  

X Approximate solution Exact solution 

0.00000 1.00000 1.00000 

0.00020 0.4560560 0.4535159 

0.00040 0.3783315 0.3796358 

0.00055 0.3713096 0.3707004 

0.00070 0.3684529 0.3687498 

0.00085 0.3685201 0.3683575 

0.00100 0.3682148 0.3683130 

0.00115 0.3683900 0.3683459 

0.00130 0.3683679 0.3683962 

0.00150 0.3684776 0.3684686 

0.00175 0.3685433 0.3685606 

0.00200 0.3686297 0.3686527 

0.00500 0.3697476 0.3697602 

0.01000 0.3716192 0.3716135 

0.01500 0.3734570 0.3734760 

0.02000 0.3753495 0.3753479 

0.03000 0.3791019 0.3791198 

0.04000 0.3829309 0.3829296 

0.06000 0.3906467 0.3906645 

0.08000 0.3985607 0.3985557 

0.10000 0.4065937 0.4066062 

0.15000 0.4274547 0.4274513 

0.20000 0.4493461 0.4493649 

0.25000 0.4724050 0.4724020 

0.30000 0.4966005 0.4966201 

0.35000 0.5220817 0.5220797 

0.40000 0.5488243 0.5488446 

0.45000 0.5769824 0.5769815 

0.50000 0.6065399 0.6065609 

0.550000 0.6376565 0.6376569 

0.60000 0.6703249 0.6703469 

0.65000 0.7047110 0.7047127 

0.70000 0.7408174 0.7408404 

0.75000 0.7788171 0.7788202 

0.80000 0.8187230 0.8187471 

0.85000 0.8607160 0.8607209 

0.90000 0.9048215 0.9048464 

0.95000 0.9512262 0.9512342 

1.00000 1.00000 1.00000 

                                                

Table-4.1 (b) 
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Example 4.2 

Consider the following non- homogeneous singular perturbation problem 

10,21)(')(
'' ≤≤+=+ xxxyxyε                                 (4.21) 

          1)1(yand0)0(ywith ==  

           

)1(

)1()12(
)21()(

ε

εεε x
e

x
e

xxxy −
−

−
−−+−+=                      (4.22) 

We have solved the problem (4.21) with ε = 10
-3

 and ε  =10
-4

 respectively.  The approximate 

solutions obtained by the proposed method compared with the exact solution (4.22) in tables 

4.2( a)  and 4.2( b)  for ε = 10-3  and ε  =10-4 respectively.  From the results we can conclude 

that the approximation is in good agreement with the exact solution. 
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Case1 :ε = 10
-3  

,h= 0.0015 and  δδδδ = 0.009 

X Approximate solution Exact solution 

0.00000 -0.00000002 0.00000000 

0.00200 -0.85699360 -0.86093540 

0.004000 -0.97758870 -0.97571300 

0.00600 -0.98817260 -0.98950220 

0.00750 -0.99050180 -0.98990680 

0.00900 -0.98847780 -0.98881390 

0.01050 -0.98753940 -0.98738320 

0.01200 -0.98575430 -0.98587390 

0.01350 -0.98437370 -0.98434340 

0.01500 -0.98276670 -0.98280470 

0.01750 -0.98022520 -0.98022870 

0.02000 -0.97763900 -0.97764000 

0.04000 -0.95647660 -0.95648000 

0.06000 -0.93447790 -0.93452000 

0.08000 -0.91175710 -0.91176000 

0.10000 -0.88816940 -0.88820000 

0.15000 -0.82579450 -0.82580000 

0.20000 -0.75836100 -0.75840000 

0.25000 -0.68599440 -0.68600000 

0.30000 -0.60856180 -0.60860000 

0.35000 -0.52619370 -0.52620000 

0.40000 -0.43876260 -0.43880000 

0.45000 -0.34639280 -0.34640000 

0.50000 -0.24896340 -0.24900000 

0.55000 -0.14659230 -0.14660000 

0.60000 -0.03916838 -0.03919995 

0.70000 0.19060910 0.19060000 

0.80000 0.44043510 0.44040000 

0.90000 0.71021060 0.71020000 

1.00000 1.00000000 1.00000000 

 

Table-4.2(a) 
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Case ii: ε = 10
-4

 , h= 0.0015 and δδδδ = 0.009 

x Approximate solution Exact solution 

0.00000 0.00000000 0.00000000 

0.00020 -0.86029370 -0.86429180 

0.00040 -0.98317150 -0.98108800 

0.00055 -0.99422230 -0.99516390 

0.00070 -0.99867910 -0.9981880 

0.00085 -0.99851080 -0.99874600 

0.00100 -0.99893080 -0.99875380 

0.00115 -0.99859070 -0.99863870 

0.00130 -0.99856280 -0.99849630 

0.00150 -0.99830530 -0.99829780 

0.00175 -0.99809630 -0.99804730 

0.00200 -0.99785460 -0.99779640 

0.00500 -0.99481750 -0.99477600 

0.01000 -0.98971440 -0.98970200 

0.01500 -0.98462950 -0.98457800 

0.02000 -0.97942300 -0.997940400 

0.03000 -0.96895580 -0.96890600 

0.04000 -0.95822740 -0.95820800 

0.06000 -0.93626150 -0.93621200 

0.08000 -0.91342900 -0.91341600 

0.10000 -0.88986090 -0.88982000 

0.15000 -0.82734430 -0.82733000 

0.20000 -0.75988980 -0.75984000 

0.25000 -0.68736340 -0.68735000 

0.30000 -0.60990980 -0.60986000 

0.35000 -0.52738350 -0.52737000 

0.40000 -0.43992980 -0.43988000 

0.45000 -0.34740370 -0.34739000 

0.50000 -0.24994970 -0.24990000 

0.550000 -0.14742380 -0.14741000 

0.60000 -0.03996952 -0.03991995 

0.65000 0.07255605 0.07256994 

0.70000 0.19001050 0.19006000 

0.75000 0.31253600 0.31255000 

0.80000 0.43999070 0.44004000 

0.85000 0.57251580 0.57253010 

0.90000 0.70997110 0.71001990 

0.95000 0.85249320 0.85251000 

1.00000 1.00000000 1.00000000 

  

Table-4.2(b) 
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Example 4.3  

Consider the following homogeneous singular perturbation problem 

 1         x   0                    ,         0y(x)
2

1
(x)'y)

2

x
(1(x)''yε ≤≤=−−+                             (4.23) 

   1         0 and y(1)th y(0)         wi                                                  ==                           (4.24) 

yis given bve system or the abosolution fThe exact  

                   ε

)
4

2x(x

e   
2

1

2-x

1
     y(x)           

−−

−=                                           (4.25) 

We have solved the problem (4.23) and   (4.24) with ε = 10
-3

 and   ε = 10
-4

 respectively.  The 

approximate solutions obtained by the proposed method compared with the exact solution 

(4.25) in tables4.3 (a) and 4.3(b) for ε = 10
-3 

and ε = 10
-4 

respectively.  From the results we 

can conclude that the approximated solution is in good agreement with the exact solution. 

 



73 

 

 

 

 When ε = 10
-3

 , h= 0.0015 and δδδδ = 0.01: 

x Approximate solution Exact solution 

0.00000 0.00000000 0.00000000 

0.00200 0.43143500 0.43276520 

0.00400 0.49348850 0.49180750 

0.00600 0.50033520 0.50025390 

0.00750 0.50265150 0.50160160 

0.000900 0.50278040 0.50219720 

0.01050 0.50345490 0.50262470 

0.01200 0.50370730 0.50301490 

0.01350 0.50416470 0.50339720 

0.01500 0.50451180 0.50377820 

0.01750 0.50516460 0.50441360 

0.02000 0.50580300 0.50505050 

0.04000 0.51095780 0.51020410 

0.06000 0.51620030 0.51546390 

0.08000 0.52159140 0.52083330 

0.10000 0.52706180 0.52631580 

0.15000 0.54130300 0.54054050 

0.20000 0.55630370 0.55555560 

0.25000 0.57219510 0.57142860 

0.30000 0.58898430 0.58823530 

0.35000 0.60682340 0.60606060 

0.40000 0.62574110 0.62500000 

0.45000 0.64590950 0.64516130 

0.50000 0.66738650 0.66666670 

0.55000 0.69037260 0.68965520 

0.60000 0.71496650 0.71428570 

0.70000 0.76985300 0.76923080 

0.80000 0.83382150 0.83333330 

0.90000 0.90940120 0.90909090 

1.00000 1.00000000 1.00000000 

 

Table-4.3(a) 
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 When ε = 10
-4

 , h= 0.00015  and  δδδδ = 0.009 

x Approximate solution Exact solution 

0.00000 0.00000000 0.00000000 

0.00020 0.43043570 0.43237560 

0.00040 0.49204900 0.49093850 

0.00055 0.49769060 0.49809260 

0.00070 0.50003340 0.49971850 

0.00085 0.50006230 0.50011070 

0.00100 0.50038530 0.50022740 

0.00115 0.50032800 0.50028260 

0.00130 0.50042680 0.50032410 

0.00150 0.50044830 0.50037520 

0.00175 0.50053190 0.50043790 

0.00200 0.50059910 0.50050050 

0.00500 0.50134340 0.50125310 

0.01000 0.50258850 0.50251260 

0.01500 0.50387380 0.50377830 

0.02000 0.50512970 0.50505050 

0.03000 0.50770910 0.50761420 

0.04000 0.51028380 0.51020410 

0.06000 0.51555930 0.51546390 

0.08000 0.52091040 0.52083330 

0.10000 0.52640750 0.52631580 

0.15000 0.54061920 0.54054050 

0.20000 0.55565320 0.55555560 

0.25000 0.57150760 0.57142860 

0.30000 0.58833400 0.58823530 

0.35000 0.60614000 0.60606060 

0.40000 0.62509890 0.62500000 

0.45000 0.64523990 0.64516130 

0.50000 0.66676450 0.66666670 

0.55000 0.68973150 0.68965520 

0.60000 0.71438070 0.71428570 

0.65000 0.74081240 0.74074070 

0.70000 0.76932000 0.76923080 

0.75000 0.80006340 0.80000000 

0.80000 0.83341220 0.83333330 

0.85000 0.86961480 0.86956520 

0.90000 0.90915200 0.90909090 

0.95000 0.95240890 0.95238100 

1.00000 1.000000000 1.00000000 

 

Table-4.3(b) 
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Example 4.4  

Consider the non-linear singular perturbation problem 

                      1x0                               ,0e)x(y2)x(y y''' ≤≤=++ε                                   (4.26)  

              0y(1) and 0y(0)h        wit          ==                                                                    (4.27) 

Applying Quasi-linearization technique [9] to the equation (4.26) with the boundary 

conditions (4.27) , we get a sequence of linear problems as 

....3,2,1,0r,ry
 e )1ry(

1r
yry

e'
1r

y2)x(''
1r

y =−=+++++ε                              (4.28) 

We solved the system of equations (4.28) along with the boundary conditions (4.27) by the 

Galerkin method by taking   ε = 10
-3

 and ε  = 10
-4

. 

For the above problem (4.26) with (4.27) , we have chosen Bender and Orszag’s  uniformly 

valid approximation for comparisons[10] 

.2log
1

2
log)(

2

ε
x

e
x

xy

−

−
+

=  

The approximate solution obtained by the proposed method with ε  =10
-3

 and ε =10
-4

 are 

compared with Bender and Orszag’s uniformly valid approximation in tables 4.4(a) and 4.4 

(b) respectively. 
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 ε =10
-3

 ,  h= 0.0015 and  δ = 0.01 

X Approximate solution Bender and Orszag’s  

Solution 

0.00000 0.00000002 0.00000000 

0.00200 0.65748040 0.67845370 

0.00400 0.70612440 0.68892260 

0.00600 0.66894180 0.68716080 

0.00750 0.69315830 0.68567500 

0.000900 0.67522500 0.68418740 

0.01050 0.68431480 0.68270190 

0.01200 0.67576530 0.68121860 

0.01350 0.67898120 0.67973750 

0.01500 0.67481950 0.67825860 

0.01750 0.67409990 0.67579850 

0.02000 0.67159250 0.67334460 

0.04000 0.65224490 0.65392650 

0.06000 0.63139740 0.63487830 

0.08000 0.61466250 0.61618610 

0.10000 0.59493630 0.59783700 

0.15000 0.55188670 0.55338530 

0.20000 0.50765000 0.51082560 

0.25000 0.46869290 0.47000360 

0.30000 0.42775760 0.43078290 

0.35000 0.39185340 0.39304260 

0.40000 0.35379040 0.35667490 

0.45000 0.32049830 0.32158360 

0.50000 0.28491780 0.28768210 

0.55000 0.25391780 0.25489220 

0.60000 0.22074560 0.22314350 

0.70000 0.16161750 0.16251890 

0.80000 0.10290410 0.10536050 

0.90000 0.05045704 0.05129331 

1.00000 0.00000000 0.00000000 

 

Table-4.4( a) 

 



77 

 

 

 

  When εεεε = 10
-4

 , h = 0.00015 and   δ = 0.009 

X Approximate solution Bender and Orszag’s 

 solution 

0.00000 0.00000001 0.00000000 

0.00020 0.66487960 0.68025180 

0.00040 0.71735530 0.69251470 

0.00055 0.68253430 0.69258580 

0.00070 0.70516570 0.69244680 

0.00085 0.69029840 0.69229750 

0.00100 0.70000280 0.69214770 

0.00115 0.69327410 0.69199780 

0.00130 0.69723960 0.69184800 

0.00150 0.69440290 0.69164830 

0.00175 0.69625960 0.69139870 

0.00200 0.69628190 0.69114920 

0.00500 0.69256170 0.68815960 

0.01000 0.68608380 0.68319680 

0.01500 0.68313440 0.67825860 

0.02000 0.67649420 0.67334460 

0.03000 0.66833750 0.66358840 

0.04000 0.65701630 0.65392650 

0.06000 0.63951640 0.63487830 

0.08000 0.61878140 0.61618610 

0.10000 0.60188630 0.59783700 

0.15000 0.55582390 0.55338530 

0.20000 0.51506570 0.51082560 

0.25000 0.47210980 0.47000360 

0.30000 0.43478810 0.43078290 

0.35000 0.39490450 0.39304260 

0.40000 0.36047190 0.35667490 

0.45000 0.32323650 0.32158360 

0.50000 0.29129870 0.28768210 

0.55000 0.25636300 0.25489220 

0.60000 0.22660280 0.22314350 

0.65000 0.19368250 0.19237190 

0.70000 0.16583970 0.16251890 

0.75000 0.13470030 0.13353140 

0.80000 0.10855740 0.10536050 

0.85000 0.07900877 0.07796153 

0.90000 0.05435734 0.05129331 

0.95000 0.02640168 0.02531781 

1.00000 0.00000000 0.00000000 

 

Table-4.4 (b) 
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CONCLUSIONS 

         Convection-diffusion problems form a class of singular perturbation problems. 

Singular perturbed two-point boundary value problems have been solved by Galerkin method 

with cubic B-Splines as basis functions.  The basis functions have been redefined into a new 

set of basis functions which vanish on the boundary where the Dirichlet type of boundary 

conditions is applied.  A finer mesh has been taken near and around  δ where the left 

boundary layer is located.  Many examples including linear and nonlinear problems have 

been considered for testing the efficiency of the proposed method. The proposed Galerkin 

method has given the computational results which are very much close to the analytical 

solutions which are available in the literature for a fine mesh size h.  Though the diffusion 

coefficient value allowed to take very lower,   the convergence existed to the reasonable 

accuracy through out the region. Byandlarge this method is very   efficient method and easily 

implemented on a digital computer by writing the suitable numerical code.  From the results 

we observed that the approximation solutions obtained by the developed method are in good 

agreement with the exact solutions of the selected problems.   
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CHAPTER-5 

 

NUMERICAL INTEGRATION METHOD FOR STEADY –STATE CONVECTION-

DIFFUSION PROBLEM 

 

INTRODUCTION 

 In this chapter, a numerical integration method is presented for solving a general 

steady-state convection problem or singularly perturbed two-point boundary value problem.  

The governing second-order differential equation is replaced by an approximate first-order 

differential equation with a small deviating argument.  Then the Simpson one-third formula 

is used to obtain the three term recurrence relationship.  The proposed method is iterative on 

the deviating argument.  To test and validity of this method  we have solved several model 

linear problems with left-end boundary layer or right-end boundary layer or an internal layer 

and offered the computational results. 

 Convection-diffusion problems occur very frequently in the fields of science and 

engineering such as fluid dynamics, specifically the fluid flow problems involving large 

Reynolds number and other problems in the great world of fluid motion.  The numerical 

treatment of singular perturbation problems is far from trivial because of the boundary layer 

behavior of the solution.  However, the area of convection-diffusion problems is a field of 

increasing interest to applied mathematicians. 

The survey paper by Kadalbajoo and Reddy [30], gives an intellectual outline of the singular 

perturbation problems and their treatment starting from Prandtl’s paper [51] on fluid 

dynamical boundary layers.  This survey paper will remain as one of the most readable 

source on convection-diffusion or singular perturbation problems. 

 

In this chapter, a numerical integration method is presented for solving general singularly 

perturbed two-point boundary value problems. The main advantage  of this method is that it 

does not require very fine mesh size.  The original second-order differential equation is 

replaced by an approximate first-order differential equation with a small deviating argument.  

Then, the Simpson one-third formula is used to obtain the three term recurrence relationship.  

Thomas Algorithm is applied to solve the resulting tri diagonal algebraic system of 
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equations.  The proposed method is iterative on the deviating argument.  The method is to be 

repeated for different choices of the deviating argument until the solution profile stabilizes.  

To examine the applicability of the proposed method, we have solved several model linear 

problems with left-end boundary layer or right –end boundary layer or an internal layer and 

presented the numerical results.  It is observed that the numerical integration method 

approximates the exact solution extremely well. 

 

NUMERICAL INTEGRATION METHOD 

For the sake of convenience we call our method the ‘Numerical Integration Method’.  

To set the stage for the numerical integration method, we consider the following Governing 

linear Convection-diffusion two-point boundary value problem: 

                    1x0  ; f(x)  b(x)y(x) (x)'y a(x)  (x)
''

y ε ≤≤=++             (5.1) 

With y (0) =α and y (1) = β                                                                                               (5.2)  

Where ε  is a small positive parameter called diffusion parameter which lies in the 

interval 0<ε ≤ 1 ;  α and β are given constants; a(x) , b(x) and f(x) considered to be 

sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that a(x) 

≥ M >  0 throughout the interval [0,1], where M is some positive constant.  This assumption 

purely implies that the boundary layer will be in the neighborhood of x=0. 

Let δ be a small positive deviating argument (0<  δ ≤ 1).  By applying Taylor series 

expansions in the neighborhood of the point x, we have  

                            )x(''y 
2

2
)x('y )x(y)x(y

δ
+δ−≈δ−                                                     (5.3) 

and consequently, Eq. (5.1) is replaced by the following first-order differential equation with 

a small deviating argument. 

(x)]'y δy(x)-δ)-y(x [
2δ

2
   (x)

''
y   (x)'y δy(x)-δ)-y(x  (x)''y 

2

2δ
+=⇒+= So that 

(5.1)      ⇒ 1  x 0 ; f(x)  y(x) b(x) (x)'y a(x) ] (x)'y δy(x)-δ)-y(x [
2δ

2ε
≤≤=+++  

⇒ f(x) 
2δ  

2δ y(x) b(x) 
2δ (x)

'
y a(x) (x)

'
y δ ε 2 y(x) ε 2- δ)-y(x ε 2 =+++  
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  δ)-y(x ε 2- f(x) 
2δ  y(x) 2εε-

2δ [b(x) (x))
'

(y ]
2δ a(x) [2ε2 =++⇒  

 y(x)  
2δ  a(x)δ ε 2

)2δ  b(x)-ε (2
  δ)-y(x 

2δ  a(x) δ ε 2

δ)-y(x ε 2-f(x) 2δ
  (x)'y

+
+

+
=⇒  

    
2δ a(x) δ ε  2

f(x) 2δ
 y(x) 

2δ a(x)δ ε 2

2δ b(x)-2ε
  δ)-y(x 

2δ a(x) δ ε 2

ε 2-
  (x)'y

+
+

+
+

+
=⇒                 (5.4) 

(5.4) can be re-written as 

                            1xδfor  r(x) y(x) q(x) δ)-y(x p(x) (x)'y ≤≤++=                (5.5) 

Where 

             
a(x) 2δ δ ε 2

2ε-
  p(x)

+
=                 (5.6) 

               
a(x) 2δ δ ε 2

b(x) 
2δ2ε

  q(x)                     
+

−
=                 (5.7) 

                             
a(x) 

2δ δ ε 2

 f(x) 
2δ

  r(x)
+

=                                (5.8) 

We now divide the interval [0,1] into N equal parts with mesh size h, i.e., h=1/N  

and  xi = ih for  i= 1,2,3…….N.  Integrating equation (5.5) in [xi-1,xi+1] we get 

 ∫
+

−

++=
+

1i
x

1i
x

               dx         ] r(x)  y(x)q(x) δ)-y(x [p(x)  ) 
1-i

y(x-) 
1i

y(x                          (5.9) 

By making use of the Newton-Cotes formula when n=2 i.e.  by applying Simpson’s  one-

third  rule 

)
1i

)y(x
1i

q(x )
1i-

y(x )
1i

q(x )
1i

y(x )
1i

q(x δ)]
1i-

y(x δ)
1i

[y(x  )
1i

p
1i

(p

δ)- 
1i-

p(x δ)
i

y(x )
i

p(x 4 δ)- 
1i

)y(x
1i

[p(x
3

h
 )

1i-
y(x- )

1i
y(x

+++−++++−+−+−+++

+−+++=+

] )
1i

r(x)
1i

r(x)
1i

r(x)
i

4r(x)
1i

r(x )
1i

)y(x
1i

q(x)
i

)y(x
i

4q(x −+++−++++−−++       (5.10) 

 

Again by means of Taylor’s series expansion, we have  

(x)'y δ-y(x)  δ)y(x ≅−  
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and then by approximating )(y ' x  by linear interpolation method we get 

h2
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Similarly 
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Hence making use of (5.11),(5.12),(5.13)  in (5.10), it  can be written as 
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(5.14) can be written in the standard form as 

                      D  y Cy By A i1iiii1-ii =++ +                                                                   (5.15) 
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                    ]rr2r[
3

2h
  D 1ii1ii −+ ++=                  (5.19) 

Here yi =y(xi ), pi =p(xi), qi =q(xi) and ri =r(xi).  Equation (5.16) gives a system of (N-1) 

equations with (N+1) unknown’s y0 to yN.  The two given boundary conditions (5.2) together 

with these (N-1) equations are then sufficient to solve for the unknowns y0  to  yN.   The 



83 

 

 

 

solution of the Tri-diagonal system (5.15) can be obtained by using an efficient algorithm 

called ‘Thomas Algorithm.  In this algorithm we set a difference relation of the form 

 

                                               T  y W y i1iii += +              (5.20) 

Where Wi  and Ti  correspond to W(x i ) and T (x i ) are to be determined from (5.20) we have 

                                                                      
     1-i

T 
i

y 
1-i

 W 
1

+=−iy              (5.21) 

Substituting (5.21) in (5.15) we get 
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By comparing (5.20) and (5.22) , we can get 

                                   
WAB

C
W

1iii

i
i

−−
=               (5.23) 

                          
WAB

DTA
T

1iii

i1ii
i

−

−

−
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=                (5.24) 

 

To solve these recurrence relations for i=1,2, 3,…….N-1; we need to know the initial 

conditions for W0 and T0. This can be done by considering (5.2) 

(5.25)                                                                                                              0100 TyWy +== α
  

If we choose  W0=0, then T0 =α .  With these initial values , we compute sequentially 

Wi and Ti for i=1,2,3,….N-1;from (5.24) and (5.25) in the forward process and then obtain yi  

in the backward process from (5.20) using (5.2). 

Repeat the numerical scheme for different choices of  δ (deviating argument, 

satisfying the conditions )10( ≤< δ , until the solution profiles do not differ significantly 

from iteration to iteration.  For computational point of view, we use an absolute error 

criterion, namely 

 

 

(5.26)                                                                                         1x0 , )()(
1 ≤≤≤−+ ρmm

xyxy
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Where mxy )( the solution for the mth is
 
iterate of δ, and ρ  is the prescribed tolerance bound. 

 

LINEAR PROBLEMS 

We considered the applicability of the numerical integration method; we have applied 

it to linear singular perturbation problems with left-end boundary layer.  These examples 

have been chosen because they have been widely discussed in the literature and approximate 

solutions are available for comparison. 

 

Example 5.1: 

Consider the following homogeneous Singular value perturbation problem from 

Kevorkian and Cole [36], p.33, Eqs. (2.3.26) and (2.3.27) with α =0: 

 

))exp(-1/-(1

))exp(-x/-(1
  y(x)

bygiven  issolution exact  The

1 y(1) and 0y(0) with 1x0  0, )(')('' 

ε
ε

ε

=

==≤≤=+ xyxy

 

The computational results are presented in Table 5.1(a) and 5.1(b) for ε = 10
-3

, 10
-4

 

respectively. 
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Computational results for Example5.1 

(a) εεεε=10
-3

, h=0.01. 

X y(x)   Exact solution 

 δ=0.008 δ=0.009 δ=0.01  

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9876486 0.9899944 0.9917358 1.0000000 

0.04 0.9998419 0.9998944 0.9999319 1.0000000 

0.06 0.9999925 0.9999934 0.9999995 1.0000000 

0.08 0.9999945 0.9999945 1.0000000 1.0000000 

0.10 0.9999946 0.9999948 1.0000000 1.0000000 

0.20 0.9999954 0.9999952 1.0000000 1.0000000 

0.40 0.9999964 0.9999964 1.0000000 1.0000000 

0.60 0.9999976 0.9999976 1.0000000 1.0000000 

0.80 0.9999988 0.9999988 1.0000000 1.0000000 

1.00 1.00000000 1.00000000 1.0000000 1.0000000 

                                       

Table. 5.1(a) 

 

 

(b)      εεεε= 10
-4 

 and h= 0.01:  

             . 

x δ=0.007 δ=0.008 δ=0.009 Exact soln 

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9998016 0.9998477 0.9998792 1.0000000 

0.04 0.9999999 1.0000000 1.0000000 1.0000000 

0.06 1.0000000 1.0000000 1.0000000 1.0000000 

0.08 1.0000000 1.0000000 1.0000000 1.0000000 

0.10 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 1.0000000 1.0000000 1.0000000 1.0000000 

0.40 1.0000000 1.0000000 1.0000000 1.0000000 

0.60 1.0000000 1.0000000 1.0000000 1.0000000 

0.80 1.0000000 1.0000000 1.0000000 1.0000000 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 

          

                                                                      Table.5.1 (b) 
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Example 5.2 

 Consider the following homogeneous Singular perturbation problem from Bender and 

 Orsag[10] ,p.480. Problem 9.17 with α =0: 

 
bygiven  issolution  exact  The

1 y(1) and 0y(0) with 1x0  0, y(x)(x)'y(x)
''

y ε ==≤≤=−+
 

 

)1
m

e2
m

(e

2)11(11)2
m

(e
y(x)

−

−+−
=

xm
e

m
e

xm
e        where 

 
ε

ε
2

411-
  1

++
=m     ; 

ε
ε

2

41-1-
  2

+
=m   

 Computational results for Example 5.2 are furnished   in table 5.2(a) and 5.2(b). 

 

 Case-1:  εεεε=0.001, h=0.01 

X y(x)   Exact 

solution 

→ δ=0.008 δ=0.009 δ=0.01  

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3834784 0.3819605 0.3808348 0.3756784 

0.04 0.3834410 0.3833556 0.3832939 0.3832599 

0.06 0.3910826 0.3910290 0.3909866 0.3909945 

0.08 0.3989720 0.3989188 0.3988770 0.3988851 

0.10 0.4070216 0.4069688 0.4069269 0.4069350 

0.20 0.4497731 0.4497210 0.4496799 0.4496879 

0.40 0.5492185 0.5491707 0.5491330 0.5491404 

0.60 0.6706514 0.6706123 0.6705816 0.6705877 

0.80 0.8189330 0.8189092 0.8188905 0.8188942 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 

 

                                                                         Table 5.2 (a) 
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    Case-2 :     εεεε= 10
-4

 and h=0.01 : 

X y(x)   
Exact 

solution 

→ δ=0.009 δ=0.008 δ=0.007  

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3754246 0.3754509 0.3754841 0.3753479 

0.04 0.3829308 0.3829373 0.3829417 0.3829296 

0.06 0.3906657 0.3906722 0.3906766 0.3906645 

0.08 0.3985569 0.3985633 0.3985675 0.3985557 

0.10 0.4066074 0.4066138 0.4066185 0.4066062 

0.20 0.4493662 0.4493724 0.4493767 0.4493649 

0.40 0.5488456 0.5488514 0.5488553 0.5488445 

0.60 0.6703477 0.6703524 0.6703555 0.6703469 

0.80 0.8187476 0.8187505 0.8187524 0.8187471 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 

                                                       

                                                                        Table.5.2 (b) 

 

Example 5.3. 

 Consider the following non-homogeneous Singular perturbation problem 

))exp(-1/-(1

))exp(-x/-(1
 1)-(2 )2-1 x(x y(x)         

bygiven  issolution exact  The      

 1 y(1) and 0y(0)with           

 1x0    ,21)(')(''y 

ε
εεε

ε

++=

==
≤≤+=+ xxyx

 

The computational results are presented in Table 5.3(a) and 5.3(b) for ε=10
-3

, 10
-4 

 

respectively. 
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Computational results for Example 5.3 

(a)     εεεε=10
-3

, h=0.01. 

X Y(x)   Exact solution 

→ δ=0.008 δ=0.009 δ=0.01  

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 -0.9648339 -0.9674433 -0.9693918 -0.9776401 

0.04 -0.9558469 -0.9561658 -0.9564114 -0.9564800 

0.06 -0.9340471 -0.9343091 -0.9345188 -0.9345200 

0.08 -0.9112990 -0.9115545 -0.9117596 -0.9117600 

0.10 -0.8877492 -0.8879992 -0.8881995 -0.8882000 

0.20 -0.7579996 -0.7582219 -0.7583995 -0.7584000 

0.40 -0.4385004 -0.4386670 -0.4387995 -0.4388000 

0.60 -0.0390007 -0.0391119 -0.0391996 -0.0391999 

0.80 0.4404994 0.4404438 0.4404002 0.4404000 

1.00 1.0000000 1.00000000 1.00000000 1.00000000 

                                          

                                                               Table 5.3(a)  

 

(b)    εεεε= 10
-4 

and h= 0.01  

        

X δ=0.007  δ=0.008 δ-0.009 Exact Solution  

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 -0.9791212 -0.9792020 -0.9792610 -0.9794040 

0.04 -0.6581250 -0.9581596 -0.9581869 -0.9582080 

0.06 -0.9361311 -0.9361844 -0.9361909 -0.9362120 

0.08 -0.9133368 -0.9133694 -0.9133958 -0.9134160 

0.10 -0.8897421 -0.8897744 -0.8897998 -0.8898200 

0.20 -0.7597710 -0.7597994 -0.7598217 -0.7598400 

0.40 -0.4398281 -0.4398495 -0.4398661 -0.4398800 

0.60 -0.0398852 -0.0398996 -0.0399109 -0.0399199 

0.80 0.4400573 0.4400503 0.4400447 0.4400400 

1.00 1.00000000 1.00000000 1.00000000 1.00000000 

 

                                                                   Table.5.3 (b) 
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 RIGHT END BOUNDARY LAYER PROBLEMS 

We now describe the numerical integration method for solving problems with the 

boundary layer at the right-end of the underlying interval.  To be specific we consider the 

following singular perturbation problem. 

      1         xf(x) ; 0y(x)b(x)(x)'ya(x)(x)
''

ε y ≤≤=++            (5.27) 

     β α and y(1)y(0)      with ==               (5.28) 

  
Where ε  is a small positive parameter (0<ε <<1);  βα   ,  are given constants; a(x), 

b(x) and f(x) are assumed to be sufficiently continuously differentiable functions in [0, 1]. 

Here we are assumed that a(x) ≤  M < 0 throughout the interval [0,1] where M is 

some negative constant. This assumption merely implies that the boundary layer will be in 

the neighborhood of x=1. 

The evaluation of the right-end boundary layer for (5.27) and  (5.28) is similar to that of the 

left-end boundary layer but there are some differences worth noting.  By using Taylor series 

expansion in the neighborhood of the point x, we have consequently, Eq. (5.27) is replaced 

by the following first-order differential equation with a small deviating argument. 

         f(x)2δy(x)b(x)2δ(x)'ya(x)2δ(x)'yδ  ε 2y(x) ε 2δ)y(x2ε =++−−+           (5.29) 

Transition from Equation (5.27) to (5.29) is exists, because of the condition that δ is small 

       Viz., (0< δ<<1). 

We rewrite equation (5.29) in the following convenient form: 

δ1x0forr(x)q(x)y(x)δ)y(xp(x)(x)'y −≤≤+++=            (5.30) 

Where 
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δε 2-a(x) 2δ

2ε-
  p(x) =            (5.31) 

                                   
δε 2-a(x) 2δ

b(x) 2δ2ε
  q(x)                     

−
=             (5.32) 

                             
δε 2-a(x) 2δ

 f(x) 2δ
  r(x) =             (5.33) 

 

  We now divide the interval [0, 1] into N equal parts with mesh size h, i.e., h=1/N and 

xi = ih for i= 1, 2, 3…….N.  Integrating equation (5.30) in [
1i

x
1i

x +− ] we get 

∫ + ++=+ 1i
x

1-i
x

 dx         ] r(x) q(x)y(x) δ)-y(x [p(x)  ) 
1-i

y(x-) 
1i

y(x           (5.34) 

 By making use of the Newton-Cotes formula when n=2 i.e. applying Simpson’s one-

third rule approximately, we obtain 
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=
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                                        (5.35) 

By means of Taylor’s series expansion we have 

getweformula,ioninterpolatby(x)'mating yby approxithenand

)
i

(x'yδ)
i

y(xδ)
i

y(x +≅+
 

         )
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y(x
h
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)

i
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h

δ
-(1 ]

h
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1i

y(x
[δ )

i
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i
y(x ++=
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and similarly we have 



91 

 

 

 

                                   )
i

y(x
h

δ
)

1i
y(x)

h

δ
(1)δ

1i
(xy +

−
−≅+

−
           (5.37) 

                )
i

y(x
h

δ
)

1i
y(x)

h

δ
(1)δ

1i
 xy( −

+
+≅+

+
                                                      (5.38) 

Apply (5.36), (5.37) and (5.38) in. (5.35) we have 
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Now rearranging equation (5.39) in the three point form. i.e. three term recurrence 

relation  

 

                                         
i

D
1i

y
i

C
i

y
i

B
1i

y
i

A =+++−           (5.40) 
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 q
3

h

3

δp4
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h

δ
(1p

3

h
1   C 1i

i
1ii ++ −−+−=                          (5.43) 

                                                          ]rr4r[
3

h
  D 1ii1ii −+ ++=            (5.44) 

And yi=y(xi) , pi=p(xi), qi=q(xi) and ri=r(xi) 

 

Now we can solve (5.40) the system of equations of order (N-1) in terms of (N-1) 

unknowns y1 , y2 , y3 ,……….y N-1 by means of famous efficient Thomas algorithm. 

Repeat the numerical scheme for different choices of  δ the deviating argument, 

satisfying the condition 10 <<< δ  , until the solution profiles do not differ materially 

from iteration to iteration. 
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Example 5.4:  

 To demonstrate the applicability of the numerical integration method, we will discuss 

one singular perturbation problem with right-end boundary layer. 

0)1( )y( 

1      ;0)(')(''

==
≤≤=−

1  and y0with

x0xyxyε
 

 In this example we have a(x) =-1, b(x) = 0 and f(x) =0. Further we have a boundary layer 

of width O(ε ) at x =1 

The exact solution is given by    

)
ε

1
(exp1

)
ε

x-1
1-exp(

)x(y
−

−
=   

The computational results are presented in Table 5.4(a) and 5.4(b), for  ε  = 10
-3,

 10
-4

 

respectively. 

 

Computational results for Example5.4: 

ε = = 10
-3

 and h=0.01 

x δ =0.008 δ =0.009 δ =0.01 Exact solution 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.9999989 0.9999997 1.0000000 1.0000000 

0.40 0.9999975 0.9999997 1.0000000 1.0000000 

0.60 0.9999962 0.9999997 1.0000000 1.0000000 

0.80 0.9999948 0.9999997 1.0000000 1.0000000 

0.90 0.9999942 0.9999997 1.0000000 1.0000000 

0.92 0.9999940 0.9999997 1.0000000 1.0000000 

0.94 0.9999920 0.9999987 0.9999995 1.0000000 

0.96 0.9998413 0.9998997 0.9999316 1.0000000 

0.98 0.9876480 0.9899997 0.9917356 1.0000000 

1.00 0.0000000 0.0000000 0.0000000 0.0000000 

  

                                                           Table.5. 4(a) 
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ε = 10
-4

 and h=0.01 

x δ =0.007 δ =0.008 δ =0.009 Exact solution 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 1.0000000 1.0000000 1.0000000 1.0000000 

0.40 1.0000000 1.0000000 1.0000000 1.0000000 

0.60 1.0000000 1.0000000 1.0000000 1.0000000 

0.80 1.0000000 1.0000000 1.0000000 1.0000000 

0.90 1.0000000 1.0000000 1.0000000 1.0000000 

0.92 1.0000000 1.0000000 1.0000000 1.0000000 

0.94 1.0000000 1.0000000 1.0000000 1.0000000 

0.96 1.0000000 1.0000000 1.0000000 1.0000000 

0.98 0.9998017 0.9998475 0.9998476 1.0000000 

1.00 0.0000000 0.0000000 0.0000000 0.0000000 

 

                                                                                  Table. 5.4(b) 

 CONCLUSIONS 

 As mentioned the numerical integration method is iterative on the deviating argument  

δ.  The process is to be repeated for different choices of  δ (deviating argument), until the 

solution profiles do not differ materially from iteration to iteration.  The choice of  δ is not 

unique but can assume any number of values satisfying the condition, 0 < δ << 1. To reduce 

the amount of computational time, we fix the mesh size h and vary the deviating argument δ. 

Finally, we pick up the smallest value of  δ which produces the required accuracy. We have 

implemented this method on various problems with a left-end boundary layer and right-end 

boundary layer by taking different values for ε. The computational results are presented in 

Tables 5.1(a) - 5.4(b).  We have given here only a few values although the solutions are 

computed at all the points with mesh size h.  It can be observed from the tables that the 

present method approximates the exact solution very well.  This shows the efficiency and 

accuracy of the present method. 

We have observed that the numerical integration method is capable of solving general 

convection-diffusion type of singularly perturbed two-point boundary value problems. This 

method provides an alternative and supplementary technique to the conventional ways of 

solving singular perturbation problems.  It is a practical method, easily adaptable on a 

computer to solve singular perturbation problems with a modest amount of problem 

preparation.  
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CHAPTER-6 

 

ARTIFICIAL DIFFUSION – CONVECTION PROBLEM IN ONE DIMENSION 

 

INTRODUCTION  

This chapter deals with a convection-diffusion problem in one-dimension with 

variable coefficient wherein an artificial – diffusion term is present.  As a closed form 

solution, in general, is not possible the classical Frobenious method   of series solution was 

used to solve the governing differential equation.  Further the problem is also solved by 

making use of a central difference scheme.  The Frobenious series solution is numerically 

computed and the results are compared with those obtained by central difference scheme.  

The results are depicted through graphs and the results obtained by both the methods seem to 

be in good agreement.  It is observed that the artificial diffusion term plays a significant role 

in the behaviour of the solution. 

Martin Stynes in his exemplary contribution [66] has presented an excellent survey of 

steady-state convection-diffusion problems. Quoting   Morton [40], Stynes observes that 

while the most common source of convection-diffusion problem is through linearization of 

Navier-Stokes equations with large Reynolds number, there are at least ten diverse situations 

where such equation occurs.  

In the present chapter we considered a convection-diffusion equation with a slight 

modification made in the diffusion coefficient, such diffusion coefficient is apparently 

increased with small quantity to analyze the nature of solution in the boundary layer region.    

The reason behind this,   in chapter-2 the steady-state convection-diffusion problem in one 

dimension has a numerical solution which has oscillatory nature in the boundary layer region.      

In the present chapter we proposed to study a convection-diffusion problem with variable 

coefficients wherein the diffusion coefficient in chapter-2 is apparently increased by adding 

an artificial diffusion term to the diffusion coefficient which is merely a numerical quantity.   

The revised differential equation is solved first by the classical series solution method 

of Frobenious.  Subsequently the differential equation is also solved numerically making use 

of a central difference scheme.  The solution is obtained by Frobenious method is 

numerically computed for a given diffusion parameter and is compared with the numerical 
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solution.  The results are seem to be in good agreement.  The artificial diffusion term 

introduced seems to have influenced the boundary layer thickness and in the present case the 

boundary layer thickness is reduced in comparison with that obtained in chapter-2.  

 

  ANALYTICAL SOLUTION 

In the case of Convection – Diffusion problem 

1  
dx

du
 

2dx

u2d
ε =+−          With the boundary conditions u(0) =u(1) = 0                   (6.1)  

Analytical solution of (6.1) is 

              1x    0for   
1/εe1

e 1/εe x)/ε(1
xu(x) ≤≤

−−

−−−−
−=                                            (6.2)  

the associated graphs of the solution (6.2)  and the computed solution of (6.1) by using 

central difference scheme  are shown here.  

 

                                            Figure.6.1 
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Now we shall consider the two–point boundary value artificial diffusion – convection 

problem in one-dimension   given by 

0u(1)   , 0u(0)th         wi1u   
dx

du
 x 

2dx

u2d
) 

2

hx
ε ( ===+++−                                          (6.3) 

Let 

) 
2

h x
(ε

1
  -     r(x) ,

)  
2

h x
  ε (

1
  -     q(x) , 

)  
2

h x
  ε(

x
   p(x)

+
=

+
=

+
−=  and (6.3) be brought to the 

standard form: 

 

0u(1)   , 0u(0)h        wit)x(ru  q(x)  
dx

du
 p(x)  

dx

u d
 

2

2

===++                                           (6.4) 

The differential equation (6.4) is linear with variable coefficients.  Closed form solution 

for this equation seems to be out of reach.  Hence we propose to solve it by applying 

series solution method due to Frobenius. 

x =0 is an ordinary point of (6.4) , its every solution can be expressed as a series of the 

form        kx 
0k k

au ∑
∞

=
=                                                                                             (6.5) 

Writing (6.5) and the expressions of  

2k x1)-(kk  

0k
k

a
2dx

u2d
    ,    1-kk x

0k
k

a
dx

du −
∑
∞

=
=∑

∞

=
=                                            (6.6) 

in (6.3) we have 

 1    kx

0k
k

a   1kx

1k

k  
k

a x   2k x1)-(kk  

2k
k

a ) 
2

hx
ε ( =∑

∞

=
+−∑

∞

=
+−∑

∞

=
+−  

The expressions for .......a,a,a,a
542 3   in terms of 

10 a,a  are given by 

3ε  48

)  εh  a 4
0

2h 2h (-) 1-(a ε 6
 

4
a , 

2ε 12

a  ε 4ah h
  

3
a  , 

2ε

1 - a
 

2
a

10100
−−

=
+−

==
a

 

 

4ε 480

) εh  a 4 - a 2h  2hε 6- a ε 6 (h  3- ) ε a 4 ah -h  ( ε 8
  a 10010

5

+−+
=     Etc., 
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On comparison of coefficients of lowest degree terms of x to zero, to determine the 

coefficients in terms of  a0 , a 1 numerically, the recurrence relation may be obtained as 

. 4 , 3 , 2n  , ] 
1n

a
2

hn 
- 

n
[a  

) 2n ( ε

1
 

2n
a =

++
=

+
…                                     (6.7) 

These coefficients are related in terms of a0 and a1 

0n substitution of all the values in equation (6.4) and the boundary conditions u(0) = 0,  

u (1) = 0  the series solution may be obtained   for h=0.01 , ε = 0.05 as  

u =1.626954733x -10 x
2
 +11.17969822 x

3
 -50.55848491 x

4
 +47.75233197 x

5
+....      (6.8) 

The approximated graph of (6.8) which is the solution of (6.3) is given below 

 

Figure 6.2 

 

which satisfies the condition of convergence in the interval 0 < x < 1   by virtue of   

D’alembert’s ratio test.  The condition of convergence can be established by introducing 

partial sums. 

 

FINITE DIFFERENCE METHOD  

Consider the artificial diffusion – convection equation 

 

    0u(1), 0u(0)   with  1u   
dx

du
 x 

2dx

u 2d
) 

2

hx
ε ( ===+++−                                         (6.9) 

Apply central difference scheme to the above differential equation where 
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h 2

1i-
u- 

1i
u

  )(x  'u +=       and 

h
2

1i
u 

i
u2- 

1i
u

(x)u ++−=′′                                               (6.10) 

where  ui = u(xi). , x= ih on substitution of (6.10) in (6.9) we get  

    1 
i

u 
h2

1i-
u - 

1i
u

ih   

h
2

1i
u  

i
u 2 - 

1i
u

 ) 
2

2h i
ε ( =+++++−+−                                          (6.11) 

The final transformed difference scheme is 

       
i

d  
1i-

u 
i

c  
i

u 
i

b  
1i

u 
i

a =+++                                                                                (6.12) 

Where  2h  
i

d , ) 2h i  ε ( -  
i

c , ) i(1 2h  ε 2  
i

b , ε-  
i

a =+=++==  

The boundary conditions u(0)  = u(1) = 0 are represented by u0 = 0 , uN   = 0 

Equation (6.12) represents a Tri-diagonal Matrix of the form 

          DuA =                                                                                                            (6.13) 

where the coefficient matrix A is of order n-1 The Non-homogeneous linear system 

(6.13) is solved by applying Thomas algorithm. Here the Coefficient matrix is a 

Monotonic matrix.  This concept incorporated   reduces the variations in the computed 

solution. The computed result with   corresponding graph is shown below. 
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Numerical solution of artificial diffusion – convection equation  

X u x u X u x u 

0 0 0.26 0.5157 0.51 0.6919 0.76 0.7591 

0.01 0.0345 0.27 0.5261 0.52 0.6964 0.77 0.7585 

0.02 0.0672 0.28 0.5361 0.53 0.7008 0.78 0.7574 

0.03 0.0982 0.29 0.5457 0.54 0.705 0.79 0.7556 

0.04 0.1275 0.3 0.555 0.55 0.7091 0.8 0.753 

0.05 0.1553 0.31 0.564 0.56 0.7131 0.81 0.7495 

0.06 0.1817 0.32 0.5726 0.57 0.7169 0.82 0.745 

0.07 0.2068 0.33 0.5809 0.58 0.7206 0.83 0.7392 

0.08 0.2307 0.34 0.589 0.59 0.7242 0.84 0.7319 

0.09 0.2534 0.35 0.5968 0.6 0.7276 0.85 0.7229 

0.1 0.275 0.36 0.6043 0.61 0.731 0.86 0.7118 

0.11 0.2956 0.37 0.6115 0.62 0.7341 0.87 0.6982 

0.12 0.3152 0.38 0.6185 0.63 0.7342 0.88 0.6816 

0.13 0.3339 0.39 0.6253 0.64 0.7401 0.89 0.6615 

0.14 0.3518 0.4 0.6319 0.65 0.7428 0.9 0.6371 

0.15 0.3689 0.41 0.6383 0.66 0.7454 0.91 0.6076 

0.16 0.3853 0.42 0.6444 0.67 0.7479 0.92 0.5719 

0.17 0.4009 0.43 0.6504 0.68 0.7501 0.93 0.5288 

0.18 0.4159 0.44 0.6562 0.69 0.7522 0.94 0.4768 

0.19 0.4302 0.45 0.6618 0.7 0.754 0.95 0.4139 

0.2 0.444 0.46 0.6672 0.71 0.7556 0.96 0.338 

0.21 0.4572 0.47 0.6724 0.72 0.757 0.97 0.2461 

0.22 0.4698 0.48 0.6775 0.73 0.758 0.98 0.1348 

0.23 0.482 0.49 0.6825 0.74 0.7588 0.99 0.0001 

0.24 0.4937 0.5 0.6873 0.75 0.7591 1 0 

0.25 0.5049  

 

                                                             Table 6.1 
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 CONCLUSIONS 

   It has been observed that the graphs shown in Fig(6.1) , Fig(6.2) , Fig(6.3)  

maintain character preserving  phenomena over (0,1).  Especially in the interval of smooth 

region steep down fall of the graph coinciding with the actual solution is  significant thing of 

considerable order.  For small ε the equation is dominated by the convection term. The 

boundary or interior layers may appear along downstream of the convection direction i.e., 

after the smooth region the diffusion effect is visible in the interval (δ, 1). The amount  

      2/)(xah  by which the diffusion coefficient was apparently increased is called the artificial 

diffusion.  Stable solution is observed under the influence of   the artificial-diffusion.  The 

exact solution is non-zero almost everywhere except at the boundary points and  approaches 

to zero  in a narrow boundary layer sub-interval very close to the point x=1. The numerically 

computed values of u also support this statement vide Table-6.1. The computed solution and 

the series solution exhibit good agreement on the convection-diffusion phenomena almost 

throughout the region.  When diffusion is more (Artificial diffusion), then the computed 

layers are smeared. 
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CHAPTER-7 

 

NUMERICAL STUDY OF CONVECTION –DIFFUSION PROBLEM IN TWO- 

DIMENSIONAL SPACE 

 

INTRODUCTION 

 

The convection-diffusion problem in two-dimensional space is solved on a unit 

square mesh with the prescribed boundary conditions by finite difference method where in 

central difference scheme is employed. In the process finite difference scheme of Standard 

five point formula was employed.  Initial approximations to temperature distribution function 

were given on the basis suitable to physical nature of the problem by intuition.     The results 

thus obtained are plotted through graphs and the physical nature of the problem is discussed.  

It is observed that there is a boundary layer at the specific values of arguments. 

Consider the elliptic operator whose second order derivatives are multiplied by a 

parameter ε that is close to zero.  These derivatives model diffusion while first-order 

derivatives are associated with the convective or transport process.  In classical problems ε is 

not close to zero.  Here the two-dimensional convection-diffusion problem is studied.  

Diffusion term play an important role at the boundary layer near the arguments x=1, y=1 

which makes rapid changes in the solution at the boundary layer. In the two-dimensional 

convection- diffusion problem the differential equation got converted to difference equation.  

The corresponding finite difference scheme is solved by using standard five point formula 

with the initial guess values. Here we have selected the relation between mesh size (h) and 

the perturbation parameter (ε) in such a way that the numerical solution gives a stable 

solution.   To summarize, when a standard numerical method is applied to a convection-

diffusion problem, when there is too little diffusion then the computed solution is often 

oscillatory, while if there is superfluous diffusion term, the computed layers are smeared. 

We can see that the solution of this problem has a convective nature on most of the 

domain of the problem, and the diffusive part of the differential operator is influential only in 

the certain narrow sub-domain.  In this region the gradient of the solution is large. This 

nature is evidenced by steep down fall of solution near the boundary. 
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 In the linear convection-diffusion problem with variable coefficient, transport 

mechanism dominates where as diffusion effects are confined to a reasonably small part of 

the domain.  The coefficient of diffusion causes the oscillations at the boundary layer. The 

solution pattern shows that at the boundary layer diffusion term play significant role.    For 

low Peclet number we may get the stable solution.  

 

ANALYTICAL SOLUTION  

 In this chapter, the diffusion coefficient ε is a small positive parameter and coefficient 

of convection a(x, y) is continuously differentiable function that is   Holder  continuous on 

Ω
v

 the closure of Ω .  

     In two dimensions, the governing convection-diffusion equation   is  

 y)f(x,  y)u(x, y)b(x, y)(x,u  y)a(x, y)∆u(x, ε =+∇+−  

                           on     2R⊂Ω  with u(x,y) = g(x,y)  on Ω∂                                              (7.1) 

where 0 < ε <<1, and the functions a, b and f are assumed to be Holder continuous onΩ
→

, the 

closure of Ω . Here we also assume that 0≥b  on Ω
r

.  Here Ω  is any bounded domain in 

R
2
 with a piecewise Lipchitz–continuous boundary Ω∂ . Let us suppose that g is continuous 

except perhaps for a jump discontinuity at a single point. 

The differential operator L is elliptic so (7.1) possess a solution in the region defined. Here L 

also satisfies the Maximum principle which is discussed in [59].  Assume that the absolute 

value of ‘a’ is close to 1 so that convection dominates diffusion.  In the problem that we 

consider, the solution u(x,y) of (7.1) has an asymptotic structure similar to that of one-

dimensional  problem which was discussed in chapter-2.   We can write u as the sum of the 

solutions to a first-order partial differential equation, u at layer(s)  with  order O(ε) term. 

To make this more precise, we divide the boundary Ω∂   into 3 parts 

Inflow boundary                      Ω∂−  = {x na.:Ω∂∈  < 0}, 

Outflow boundary                   Ω∂+  = {x na.:Ω∂∈  > 0} 

Tangential flow boundary       Ω∂0 = {x na.:Ω∂∈  = 0},     …….                                (7.2) 
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Where n is the outward-pointing unit normal to Ω∂ . 

 

 

Figure.7.1      (Partition of Ω∂ ) 

 

 

A typical solution u will have boundary layers–narrow regions close to ∂ Ω  where     

|∇u| is large along ∂ + Ω  and Ω∂0 . As in one-dimensional problems exceptional Dirichlet 

boundary conditions on g can eliminate these layers. On most of Ω  , u is approximately 

equal to u0(x,y).  Then the solution of the reduced problem 

 y)f(x,  y)u(x, y)b(x, y)(x,  y)a(x, 0 =+∇u on Ω , u0=g on ∂ - Ω                                            (7.3) 

This first-order partial differential equation (7.3) has characteristic curves which are the 

parameterized curves (x (t), y(t)) in  Ω  defined by 

( ) y)(x,a(t)yy),(x,atx 2

1

1

1 ==                                                                                     (7.4) 

with initial data (x (0), y (0)) = (x
′
 ,y

′
 ) where   (x

′
 ,y

′
 ) is any point in Ω−∂ .  Thus one such 

curve radiates into Ω  from each point in Ω−∂ . 
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 Exponential Boundary Layers 

 Consider the boundary value Problem (7.1)  

−ε ∆u + b(x, y) ∇u + c(x, y) u = f(x, y) in Ω = (0, 1) × (0, 1), 

            u = 0 on the boundary Γ 

Assume that the data are smooth and that c ≥ 0 with b = (b1, b2) where b1 > 0 and b2 > 0. 

Then the sub characteristics behave as in Figure.7. 2 and the reduced problem 

is defined as  

0
0y0

u
0x0

u,f
0

uc
0

ub. =
=

=
=

=+∇             (7.5) 

    

 

Figure.7.2 Sub Characteristics through a Corner 

 

We expect exponential boundary layers at x = 1 and at y = 1. The asymptotic approximation 

with   transformation ξ = ( 1-x) / ε and  η = (1-y)/ε takes the form: 

uAsy
∗
(x, y) = u0(x ,y) - u0(1, y) exp ( ) 




−
−

ε

x
yb

1
,11 




−
ε

y-1
)1,(exp)1,(u- 20 xbx                       (7.6) 

equation (7.6) is inaccurate near the corner point (1,1) because the boundary layer terms 

overlap there.  Consequently we add a corner layer correction which is the solution of 

 0  )1,1(b2- )1,1(b- )
2

w2
 

2

w2
(

1
=

∂
∂

∂
∂

∂

∂
+

∂

∂
−

η
ω

ξ
ω

ηξ
 On (0,∞) X (0,∞)                                        (7.7)  

With the use of the transformations ξ = (1-x) / ε and η = (1-y)/ε 
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We obtain   

uAsy(x,y) =   uAsy
∗
 (x,y) + u0(1,1) exp








ε
−








ε
−

−
y1

)1,1(b-exp 
)x1(

)1,1(b 21
 

if    ( ) ( )Ω∩Ω∈ CCU
2

0
, the classical comparison principle gives 

                                  ||u –u asy||≤  Cε                                                                                    (7.8) 

Here C is generic constant which is independent of ε.  Layers along ∂ + Ω  are called regular 

or exponential boundary layers.  Writing n  =(n1 , n2 )  for the unit outward-pointing normal 

to  the  ∂ Ω , then near  ∂ + Ω , exponential layers are essentially multiples of the function  

Exp[-(a.n) d(x,y), ∂ + Ω / ε ] ,  where d(x,y), denote the distance from the point (x,y) to the 

out-flow boundary∂ + Ω . Thus in cross-section perpendicular to ∂ + Ω  these layers are very 

much similar to the boundary layers that in one -dimension.  Their first order derivatives in 

the direction perpendicular to the boundary have magnitude ) 
1

 (
ε

O , and the width of the 

layer is ) ln(1/ε ε ( O ). 

 

FINITE DIFFERENCE METHOD: 

Consider the two-dimensional convection-diffusion problem 

                     1  
x

u
 )y,x(u =

∂
∂

+∆ε−       Equivalently 

      1  
x

u
 

2y

 u2
 

2x

 u2
ε =

∂

∂
+















∂

∂
+

∂

∂
−   defined in the region Ω = (0,1) X (0,1) 

u(x,y) =0  on the boundary   ∂ Ω                                                                                         (7.9) 

i.e., u(0,0) = 0 , u(i,0) = 0 , u(0,j) = 0 , u(1,1) = 0     i,j =1,2,3……….n 

As a closed form solution, in general, is not possible so we solve the problem by using 

Discretization method. 

Discretize the above differential equation (7.9) by using central difference approximations 

] 
1-ji,

u  
ji,

2u- 
1ji,

[u
2k

1
  

2y

u2
, ] 

j1,-i
u  

ji,
2u- 

j1,i
[u

2h

1
  

2x

u2
++=

∂

∂
++=

∂

∂
                               (7.10) 
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and                     
2h

j1,i-
u - 

j1,i
u

 
+

=
∂
∂

x

u
                                                                                (7.11) 

Apply equation (7.10), (7.11) in (7.9) to get a difference equation of the form with h = k on 

the square Region. 

[ ]
2h

j
,

1i
u

j1,i
u

1ji,
u

ji,
u2

1ji,
u

j1,i
u

ji,
2u

j1,i
u

2
h

ε −−+
+−+−++−+−+

−
 = 1 

The final transformed difference scheme is 

   
1-ji,

u 2  
1j,i

u2  
j1,-i

u h)  (2 
j1,i

u )h   (-2-22h 
8

1
j,i

u





 ε+
+

ε++ε+
+

+ε
ε

=                        (7.12) 

Select 05.0=ε  , h = 0.01 so that we can expect a stable solution. Apply the standard five 

point formula on (7.12) by selecting the initial approximations we can get values of u at each 

nodal point. The associated graph is as plotted below in figure. 7.3 

 The values of u have been computed for the ranges of x =0 to x =1 and y=0 to 

y=1with spacing h=k=0.01. There are as many as 99x99 entries in the tabulated output.  Here 

we are furnishing values of u corresponding to: x=0 to x=0.1 with step size 0.01, then for   

x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 with step size 0.1. Finally values of u for x=0.9 to   x=1 

are presented in Table.7.1 with step size 0.01. 
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Temperature Distribution (U-values): 

                                        

                                                                     Table. 7.1 

 

                                            

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0 0 0 0 0 0 0 0 0 0 0 0 

0.01 0 0.08516 0.15355 0.20461 0.24031 0.26388 0.2612 0.2617 0.2644 0.2766 0.281 

0.02 0 0.15252 0.27489 0.29882 0.4282 0.469045 0.27869 0.28759 0.29274 0.29561 0.29717 

0.03 0 0.19734 0.35617 0.29882 0.55394 0.60592 0.49433 0.50929 0.51781 0.5225 0.525 

0.04 0 0.22099 0.39993 0.29882 0.62246 0.68051 0.63776 0.6564 0.6669 0.67259 0.6756 

0.05 0 0.23024 0.41771 0.55635 0.65112 0.71183 0.71583 0.73637 0.74784 0.75404 0.75431 

0.06 0 0.23269 0.42273 0.56482 0.65963 0.72121 0.74865 0.76998 0.78186 0.78825 0.80403 

0.07 0 0.23306 0.42358 0.56482 0.66121 0.72297 0.75851 0.78009 0.79209 0.79854 0.80403 

0.08 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76038 0.78201 0.79403 0.80049 0.80403 

0.09 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.1 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.2 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.3 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.4 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.5 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.6 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.7 0 0.23309 0.42365 0.56482 0.66135 0.72312 0.76054 0.78218 0.7942 0.80066 0.80403 

0.8 0 0.23309 0.42365 0.56482 0.66134 0.72312 0.76053 0.78215 0.7942 0.80066 0.80061 

0.9 0 0.23293 0.42386 0.56211 0.65395 0.71856 0.74116 0.66777 0.79405 0.80056 0.7012 

0.91 0 0.23274 0.42196 0.5593 0.64698 0.71414 0.72493 0.59541 0.79402 0.79984 0.701 

0.92 0 0.23234 0.42014 0.5539 0.63427 0.70592 0.69724 0.55345 0.794 0.79899 0.7 

0.93 0 0.2315 0.41656 0.54389 0.61204 0.69115 0.6521 0.50432 0.79399 0.79734 0.6989 

0.94 0 0.22981 0.40978 0.52605 0.57492 0.66568 0.58233 0.5 0.78802 0.77796 0.68989 

0.95 0 0.22652 0.39743 0.49574 0.51627 0.62374 0.48118 0.48997 0.78238 0.75976 0.6885 

0.96 0 0.23038 0.376 0.49574 0.42941 0.5583 0.44878 0.48112 0.67 0.72924 0.68232 

0.97 0 0.20944 0.34084 0.43377 0.31047 0.46257 0.3052 0.46128 0.6022 0.68025 0.60723 

0.98 0 0.19102 0.28684 0.27189 0.16263 0.33297 0.3 0.42134 0.49614 0.49614 0.49978 

0.99 0 0.11989 0.11186 0.14338 0.16163 0.17356 0.1794 0.18236 0.1838 0.18446 0.18477 

1 0 0 0 0 0 0 0 0 0 0 0 

x 

y 
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CONCLUSIONS  

The inflow boundary ∂
- 
Ω is the side x = 0 of Ω ; the tangential flow boundary 

comprises of the sides y = 0 and y = 1; the outflow boundary is the remaining side x = 1. 

From (7.4) each sub characteristic is parameterized by 0 )(, 1 )( y
''

== ttx  so that we can  get 

x = t as admissible solution and the sub characteristics are the lines y = k (arbitrary). 

On most of Ω from Figure.7.3, Figure.7.4 it is evidenced that u(x, y) ≈ x in the region. 

The side x = 1 of  Ω
r

 is the outflow boundary ∂
+
Ω and an exponential layer appears there. 

The tangential flow boundaries y = 0 and y = 1 have characteristic boundary layers that grow 

in strength as x moves from 0 to 1 because of the increasing discrepancy between u0 and the 

boundary conditions. On most of the region convection process dominates where as diffusion 

process is visible only at the neighborhood of the corner point (1,1).  For low Peclet number 

convection process dominates in the region identified.  When values of x are in the range 

0.08-0.81 values of u are found to be constant for any choice of values of y, means there is no 

effect of diffusion. Infact naturally u lies in the smooth region, as mentioned above prior to 

the boundary layer region. For high Peclet number solutions are essentially of pure 

convection flows. The solution possesses an interior layer starting at (0, 0.8). On the 

boundary x=1 and on the right part of the boundary y=0 exponential layers are developed. 
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CHAPTER-8 

 

NUMERICAL STUDY OF WAVE PROPAGATION IN A NON-LINEAR MEDIUM 

DUE TO IMPACT 

 

INTRODUCTION 

      Two bodies which have distinct velocities in the same direction come into contact, an 

impact occurs.  Within the impact analysis i.e., in the displacement of the bodies after impact,   

the impact force is a function of time‘t’ which is acting like a compression force. The impact 

time is very short and the stresses generated are high. We studied non-linear material 

behaviour in the one-dimensional case after impact. The wave propagation is studied by 

means of material nature. Here we considered two bodies with same material property with 

some non-linearity.  Nonlinearity is studied after impact.  The objective of this chapter is to 

present a numerical study of propagating pulsed and harmonic waves in nonlinear media 

using a Finite difference scheme.  This study focuses on longitudinal, one-dimensional wave 

propagation. In the finite difference scheme Non-linear system is reduced to a linear system 

by quasi-linearization method.  The numerically obtained results reveal the material nature. 

 

FORMULATION OF THE PROBLEM  

       A bar -1 of length L1 impacts another bar- 2 of length ‘ L2‘.    Both bars have the same 

material properties and non-linear nature.    The left bar has an initial velocity of V0, whereas 

the right bar is at rest. 

                                            V1 =V0                        V2 =0 

 

 

Figure. 8.1 

(LONGITUDINAL IMPACT OF TWO BARS) 
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Here c (u) ≥ 0,  RN≤ 0    &    RN c (u) =0                                                     (8.1)  

          Here   Reaction force (RN ), Normal gap c(u)   are perpendicular to one another. 

Furthermore one has to  fulfill  the initial and boundary conditions of the problem  stated in   

the above figure and the standard contact conditions (8.1)  which describe that no penetration 

can occur at the contact point and also that the contact force is  a compression force.  In this 

problem our interest is to study when two objects are selected in the figure (8.1) which are 

not linear in nature.   

         For materials under plastic deformation, Materials with distributed damage, linear 

elastic Hooke’s law is usually inadequate to describe their nonlinear, inelastic behavior.  

Various constitutive laws have been proposed.  Here we study the class of materials whose 

behavior can be described by the following stress-strain relationship. 

 

( ) ( ) ( )
dτ 

ε)αs(τ
e 

ε

0
ε

]
dτ

τdf
τ[g αse ε]

0
s[ε α )]

0
f(ε)0

εαs[σ(εg
ε

)εσ(ε,
1 −

∫ −−−−−=
∂

∂                 (8.2) 

                    Where 0ε  is the initial strain s=sign (
1ε ), α  is a constant, and f ( ε ) and g ( ε ) are functions to        

                    be   determined experimentally for a given material. 

A special  case of  (8.2) namely with  no initial stress and strain is considered as 

( )  
ε

0

dτ  e ε]-αs[τ
d

)( df
}g{τ sα- e αsεsf(0)αεg

ε

) 1εσ(ε,
∫ 







−+=
∂

∂
τ
τ

                          (8. 2(a)) 

                          set   α = 0 , 

                          )δ- γε-E(1  )g( 2εε =                                                                                                    (8.3) 

One can reduce the stress-strain relationship of (8.2(a))  to the well-known nonlinear elastic 

constitutive law, 

) .....- ε2  δ - ε   γ-  E(1 
ε

) ε',( σ
=

∂
∂ ε                                                                                                (8.4) 

Where E is the second order Elastic (Young’s) modulus.  Eγ  is called the third order elastic 

constant, Equation (8.4) was derived by Landau and Lifshitz  (1959) by expanding the strain 

energy density function for hyper-elastic materials. 

Equations   (8.4) do   not show any hysteresis in the stress-strain relationship.  The hysteretic 

behavior is accounted for by using a nonzeroα .  Means, call  α  the hysteresis parameter. 
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Using the equation of motion by Achenbach [2]  

t 2

u2

x

σ

ρ

1

∂

∂=
∂
∂

                                                                                                             (8.5) 

Where u(x, t) is the displacement in the x-direction, ρ  is the mass density, and  )t  x,( σ   is 

the normal stress in the x-direction.  For the small strain deformation considered here, the 

normal strain in the x-direction is 

          
x

u
 

∂
∂

=ε                                                                                                        (8. 5(a))  

By using formula (8.5(a)) with c= 
ρ
E      and      )',( εεσσ =         in (8.5) we have 

 
x 2

u2
 1] - 

ε

σ

E

1
[  

x 2

u2
- 

t 2

u2
 

C 2

1

∂

∂
∂
∂

=
∂

∂

∂

∂                                                                          (8.6) 

 Where E is the elastic Young’s modulus and   ‘c’ can be considered as the phase 

velocity. This nonlinear equation   is solved by applying finite difference method.  In the 

middle of the process iteration across the time –step concept is introduced to overcome the 

Non-linearity of equations. 

 From equation   (8.4) in the case of a nonlinear material considered by the first two 

terms only so that we get 

     ) -E(1
)

'
,(

γε
ε

εεσ
=

∂

∂
                                                                                               (8.7) 

 ) ε2 γ
2

1
 -ε (  E  σ =                                                                                                                (8.8) 

 Clearly, when 0  =γ , the material is linear elastic.  The parameter   γ  indicates the 

amount of material nonlinearity.    The parameter γ  defined here is identical to the acoustic 

nonlinear parameter.  The acoustic nonlinear parameter arises in metals due to lattice 

anharmonicity which is usually very small in comparison to the elastic deformation of the 

metals.  So we can study wave propagation nature for various acceptable values of ϒ. Here 

we are considered the values γ  =10000, γ =5000 and  γ  =2500 respectively.   From (8.8)                       

we observe that the material behaves differently in tension and Compression, although the 

difference is only to the second order.  In the literature, such material behavior is sometimes 
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referred to as pseudo elastic. To model materials with identical nonlinear tensile and 

compressive behavior only the quadratic terms in    (8.4) should be used. 

Apply (8.8) in (8.6) to get 

       

x
2

u
2

  ) 
x

u
-1 ( c

2
  

t
2

u
2

∂

∂
∂
∂

=

∂

∂ γ                                                                                (8.9) 

Equation (8.9) is the non-linear wave - equation developed by Gol’dberg (1961) 

 

NUMERICAL SOLUTION OF WAVE EQUATION 

 We apply Finite difference scheme to   equation (8.9) with (8.10), (8.11) (given 

below) so that it becomes a difference equation where 
x

u

∂
∂

 is a varying strain value, occurs 

in the non-linear equation (8.9).  Such an equation is reduced to a linear equation by applying 

quasi- linearization technique.   Normally the value of 
x

u

∂
∂

  would be assigned its value at 

the beginning of the time-step; the computations might be repeated at various time levels.  

 This procedure of reevaluating coefficients is called Quasi-linearization method. 

 (8.9) can be re-written as  

                                                          
x

u
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u
2

2

2

2

2
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∂
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2
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2
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∂
∂

γ+
∂
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−
∂
∂

                                  (8.11) 

(8.9) is of the form: ( ) 0u,u,uf ttxxx =                                                                             (8.12) 

Apply the quasi-linearization method on the governing equation (8.9) we have 

(n)
xxu

f
)

n
xxu

1n
xx(u

(n)
xu

f
)

n
xu
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x(u

)(n
)ttu,xxu,xf(u

∂
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−++
∂
∂

−++  

                                0
)(n

ttu

f
)

(n)
ttu  

1)(n
tt(u =

∂
∂

−++            (8.13) 

(8.13) can be transformed to u(x, t) notation so that  

)n(
)]xu)(γ

(n)
xxu

1)(n
xx[(u

)n(
)xxu)(γn

xu1n
x(u

(n)
)xxuxuγxxu- tt(u −++−+++  
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Finally equation (8.14) after simplification can be written as 

 

  0   
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xxu
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xuγ
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1)(n
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xxuγ
1)n(
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1)(n
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(n+1)th stage is iterative so that 
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 ( 8.9 )  satisfy the  following  conditions  

1
h2
k2

  ≤=α    for convergence of solution. 

the boundary conditions are u(0,t) =0 ⇒  u(0,jk ) =0 for j = 1,2,3…… 

u( 15, t ) = -3    ⇒ u(15,jk)= -3 for j = 1,2,3…..n  for         t>0 

 
0t

 )
 t

 u
( =∂

∂
=   v0; 0 7.5x ≤≤    initial velocity  
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=   0; 7.5 15x ≤<   so that  

k
0

 v 
i,0

u  
i,1

u +=⇒                                                                                                    (8.19) 

 
i,0

u  
i,1

u =⇒                                                                                                (8.20) 

Initial displacement u (x, 0) = 0.125 sinx 

)ih  0.125sin(  u(ih,0) =⇒                                                                                                 (8.21) 

 Apply the quasi-linearization technique on (8.18) with (8.19), (8.20) and (8.15) we 

can get the following results. Also the wave propagation is plotted with various time levels 

with  v0 = 5 m/s . 
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NUMERICAL RESULTS  

 

 CASE-1: at 10000  =γ  

X LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4 LEVEL-5 

0 0 0 0 0 0 

0.5 0.559928 -0.17976 -2.03978 -28.8021 -518.078 

1 0.5 1.119854 2.814675 27.12049 524.336 

1.5 0.5 1 1.402315 -3.58587 -208.491 

2 0.5 1 1.5 2.3278 37.22868 

2.5 0.5 1 1.5 2 0.710263 

3 0.5 1 1.5 2 2.5 

3.5 0.5 1 1.5 2 2.5 

4 0.5 1 1.5 2 2.5 

4.5 0.5 1 1.5 2 2.5 

5 0.5 1 1.5 2 2.5 

5.5 0.5 1 1.5 2 2.5 

6 0.5 1 1.5 2 17.43236 

6.5 0.5 1 1.5 -0.7353 -140.268 

7 0.5 1 2.257288 21.67987 497.0688 

7.5 0.5 0.00019 -2.01452 -39.4301 -851.865 

8 0 0.999981 3.514522 41.43012 854.3651 

8.5 0 0 -0.75729 -19.6799 -494.568 

9 0 0 0 2.735351 142.7683 

9.5 0 0 0 0 -14.93 

10 0 0 0 0 0 

10.5 0 0 0 0 0 

11 0 0 0 0 0 

11.5 0 0 0 0 0 

12 0 0 0 0 0 

12.5 0 0 0 0 0 

13 0 0 0 0 0 

13.5 0 0 0 0 0 

14 0 0 0 0 0 

14.5 0 0 0 0 0 

15 -3 -3 -3 -3 -3 

Table. 8.1 
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Figure. 8.1(a) 
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CASE-II  

  at    5000=γ  

X LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4 LEVEL-5 

0 0 0 0 0 0 

0.5 0.559928 0.403166 0.278242 -0.63727 -9.03406 

1 0.5 1.063496 1.537378 3.049896 12.76054 

1.5 0.5 1 1.507861 1.998268 0.67732 

2 0.5 1 1.5 1.993664 2.468401 

2.5 0.5 1 1.5 2 2.510962 

3 0.5 1 1.5 2 2.5 

3.5 0.5 1 1.5 2 2.5 

4 0.5 1 1.5 2 2.5 

4.5 0.5 1 1.5 2 2.5 

5 0.5 1 1.5 2 2.5 

5.5 0.5 1 1.5 2 2.5 

6 0.5 1 1.5 2 2.408546 

6.5 0.5 1 1.5 2.052863 1.822835 

7 0.5 1 1.434411 2.558264 9.963272 

7.5 0.5 0.47023 0.51342 -0.56705 -12.476 

8 0 0.52977 0.98658 2.567053 14.97635 

8.5 0 0 0.065589 -0.55826 -7.46327 

9 0 0 0 -0.05286 0.677164 

9.5 0 0 0 0 0.091954 

10 0 0 0 0 0 

10.5 0 0 0 0 0 

11 0 0 0 0 0 

11.5 0 0 0 0 0 

12 0 0 0 0 0 

12.5 0 0 0 0 0 

13 0 0 0 0 0 

13.5 0 0 0 0 0 

14 0 0 0 0 0 

14.5 0 0 0 0 0 

15 -3 -3 -3 -3 -3 

                                                         

                                                                   Table. 8.1(b) 
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Figure. 8.1(b) 
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CASE-III:       2500=γ  

X LEVEL-1(u) LEVEL-2 LEVEL-3 LEVEL-4 LEVEL-5 

0 0 0 0 0 0 

0.5 0.559928 0.111702 0.585477 0.685795 0.688854 

1 0.5 1.091675 0.545387 0.651041 0.877135 

1.5 0.5 1 1.597348 1.508572 1.378224 

2 0.5 1 1.5 2.058116 2.53421 

2.5 0.5 1 1.5 2 2.507844 

3 0.5 1 1.5 2 2.5 

3.5 0.5 1 1.5 2 2.5 

4 0.5 1 1.5 2 2.5 

4.5 0.5 1 1.5 2 2.5 

5 0.5 1 1.5 2 2.5 

5.5 0.5 1 1.5 2 2.5 

6 0.5 1 1.5 2 2.434552 

6.5 0.5 1 1.5 1.515122 1.560284 

7 0.5 1 0.687793 1.252803 1.866625 

7.5 0.5 0.235125 1.344989 1.35211 1.250774 

8 0 0.764875 0.155011 0.647888 1.249226 

8.5 0 0 0.812207 0.747197 0.633375 

9 0 0 0 0.484878 0.939716 

9.5 0 0 0 0 0.065448 

10 0 0 0 0 0 

10.5 0 0 0 0 0 

11 0 0 0 0 0 

11.5 0 0 0 0 0 

12 0 0 0 0 0 

12.5 0 0 0 0 0 

13 0 0 0 0 0 

13.5 0 0 0 0 0 

14 0 0 0 0 0 

14.5 0 0 0 0 0 

15 -3 -3 -3 -3 -3 

 

                                                              Table.8.1(c)  
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                    Figure.8.1(c) 
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 Non-linear wave propogation:  

 

Figure.8.1 (d) 

 

 PHYSICAL INTERPRETATION 

 

For all acoustic parameter values (γ ) 

1. At the lower and the higher positions of the objects the collision might be random; 

obviously it indicates the inelastic collision.  In other words, the loss of kinetic 

energy may be sustained and converted in to equivalent sound and/or heat 

dissipated in to the surroundings. 

2. At the middle positions of the objects the collision may be uniform; obliviously it 

indicates the elastic collision.  In other wards no loss of kinetic energy is 

sustained in the collision. 

CONCLUSIONS 

        When ever an impact occurs the velocities of the two objects are changes according to 

the starting compression force applied at the impact point. An impact occurs a longitudinal 

sound wave is generated   and it propagates in the region up to free end of the second object. 
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When it reaches to the free end a reflection occurs.  That is the only reason the boundary 

condition at the free end is assumed as negative but small in magnitude. 

 The displacement in terms of the length of the impact system with respective to time 

is drawn in Figure 8.1(a) -8.1(d)   It gives the following implications. 

1) At   γ =10000 In the second level the displacement u(x,t) exhibits non-linearity at the 

middle of the position of the objects and at all other time levels , no non-linearity is 

observed. 

2) At γ =5000 all time levels, displacement sustains with respect to the origin except at 

time level 5.  At end positions at time level 5 Non-linearity is observed. 

3) At γ =2500 all the time levels exhibiting the displacements with disturbance  at end 

positions (0-2 cm and 7-10 cm) and the middle position the displacement is found to 

constant and rises with respective to the time level-1. 

4) At lower and higher  γ  values non-linearity is not observed clearly but it gives the 

tendency.  At middle  γ  value   the non-linearity behavior is clearly observed at 

higher time level-5. 

5) For all   acoustic parameter( γ )   values displacement u is observed to constant at 2 

to 6 units distance with respective to time level. 
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PART-V 
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CHAPTER-9 

CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 

 

 In this Thesis in Part – I we have studied steady-state convection-diffusion problems 

in one dimensional space and two dimensional space.   Also we have chosen a problem 

which is related to wave propagation in a non linear medium due to impact of two objects. 

This problem is also having some commonality with the convection-diffusion problems i.e. 

convection of molecules within the substance. 

 Convection-diffusion problems form a class of singular perturbation problems.  The 

numerical treatment of these Singular perturbation problems is far from trivial in view of the 

boundary layer behavior of the solutions.  There is a phenomenal change in the solution at 

the boundary layer region due to the perturbation parameter which is positive in quantity but 

very close to zero. The coefficient of the highest order derivative in the convection-diffusion 

equation. 

 

 In Part II we studied the steady state convection- diffusion problems which are 

solved by applying different numerical methods.  It consists of four chapters 2, 3, 4 and 5. 

 In Chapter 2, we studied a computational method to solve steady state convection – 

diffusion problem. In this problem an attempt is made to study the asymptotic  method to 

study   the solution nature   of the  same  equation.  We  have observed that, there is a right 

boundary layer near the argument x=1.  

 In Chapter 3, we studied  a uniformly convergent scheme for convection –diffusion 

problem namely  Allen-Il’in developed scheme  and applied to the one-dimensional 

convection-diffusion problem. We compared the solution with the finite difference methods. 

In this work a condition is contemplated for convergence It is found that Allen-Il’in scheme 

converges uniformly through out the specified domain [0,1].    

 Chapter 4 is devoted to the application of finite element method to solve singularly 

perturbed two point boundary value problems using cubic B-splines. The basis functions 

have been redefined into a new set of basis functions which vanish on the boundary where 

the Dirichlet type of boundary conditions is employed.  A finer mesh has been taken near and 
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around  δ where the left boundary layer is located.  The proposed Galerkin method has given 

the computational results which are very much close to the analytical solutions which are 

available in the literature for a fine mesh size h.    The approximate solutions obtained by the 

developed method are in good agreement with the exact solutions of the selected problems.   

 In Chapter-5   we studied numerical integration method for solving general steady-

state convection-diffusion problems The proposed method is iterative on the deviating 

argument.  The computed results are matching with the exact solution with reasonable 

accuracy.   

 In Part-III we discussed a peculiar problem coined by Stynes [66], Artificial-

diffusion convection problem and two dimensional convection-diffusion problems. It consists 

of two chapters, chapter 6 and 7. 

 Chapter 6 deals with a convection-diffusion problem in one-dimension with variable 

coefficient wherein an artificial –diffusion term is present. The numerically introduced 

artificial-diffusion reduces the oscillations in the boundary layer region. As a closed form 

solution is not available we have solved by using Finite difference methods wherein central 

difference scheme is employed. The same problem is also solved by classical Frobenious 

method. These two methods have given reasonably fair results.        

 In chapter-7 we presented convection –diffusion problem in two- dimensional 

space.   Convection-diffusion problem in two-dimensional space is solved on a unit square 

mesh with the prescribed boundary conditions by finite difference method where in central 

difference scheme is employed.  It is observed that there is a boundary layer at the specific 

values of arguments 

 Part IV consists of a single Chapter.  This chapter aims to study the Numerical study 

of wave propagation in a non-linear medium due to impact. The problem studied in this part 

is analogous to those studied in the previous part as the non-linear wave equation possesses 

convection in nature. Non-linear equation is made linear by quasi-linearization technique.             

In all the above problems, Numerical methods are used and the analytical solutions 

are attained wherever possible.  In the Numerical methods for majority of the problems finite 

difference methods are employed. In chapter-4 we have employed finite element method in 

order to get a high precision.  In a nut-shell the numerical methods presented in this thesis for 

solving convection-diffusion problems in differential equations have been shown to be 
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accurate and capable over the conventional methods.   Above all, these methods are 

conceptually simple, easy to use and are readily adaptable for computer implementation with 

a modest amount of problem preparation. 

The problems in this thesis are solved in the steady state with Dirichlet’s boundary 

conditions.   In future study it is worthwhile to study un-steady convection-diffusion 

problems with Neumann (derivative) boundary conditions and mixed boundary conditions. 

There are likely to be more challenging and numerically involved that what are 

considered in the present thesis.   
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