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NUMERICAL SOLUTION OF SOME STEADY STATE CONVECTION-
DIFFUSION AND IMPACT PROBLEMS

ABSTRACT

In this thesis, we consider numerical solution of some steady state convection-
diffusion and impact problems that deal with the fluid flow problems involving large
Reynolds number and the non-linear wave prorogation in the case of impact problem. In
the impact problem we have focused on longitudinal, one-dimensional wave propagation.
Convection-diffusion problems and impact problem have their commonality in one aspect
that both of them are convection-diffusion in nature. Convection diffusion problems
form a class of Singular perturbation problems. The numerical treatment of these
perturbation problems is far from trivial in view of the boundary layer behavior of the
solutions. In a singular perturbation problem there arises a governing differential
equation whose highest order derivative is multiplied by a perturbation parameter £. The
study of numerical solution of singular perturbation problems has attracted researchers in
numerical analysis in view of the ever increasing efficiency of the high speed computers.
The thesis is divided into five parts and consists of nine chapters.

Part-I consists of a single Chapter which is introductory in nature. In this Chapter
we introduce the steady state convection-diffusion and impact problems and present a
review of existing literature on the problems related to the thesis.

Part II deals with the steady state convection- diffusion problems which are
solved by applying various numerical methods. It consists of four chapters 2, 3, 4 and 5.
In Chapter 2, we present a computational method to solve steady state convection —
diffusion problem. In Chapter 3, we deal with a uniformly convergent scheme for
convection —diffusion problem. Chapter 4 is devoted to the application of finite element
method to solve Singularly perturbed two point boundary value problems using cubic B-
splines. Chapter-5 is devoted to study of a numerical integration method for solving

general steady-state convection-diffusion problems.
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Part-IIT deals with the Artificial-diffusion convection problem and two
dimensional convection-diffusion problems. It consists of two chapters, chapter 6 and 7.
Chapter 6 deal with a convection-diffusion problem in one-dimension with variable co-
efficients wherein an artificial —diffusion term is present. In chapter-7 we present a
numerical study of convection —diffusion problem in two- dimensional space.

Part IV consists of a single Chapter, Chapter 8.  This chapter aims to study the
numerical study of wave propagation in a non-linear medium due to impact. The problem
studied in this part is analogous to those studied in the previous part. It reveals the non-
linear wave propagation and possesses convection nature. Non-linear equation is reduced
to linear by applying quasi-linearization technique.

In all the above problems, numerical methods are used and the analytical
solutions are obtained wherever possible. In the numerical methods most of the part in
the thesis finite difference methods are employed. In chapter-4 we employed finite
element method to attain the reasonable accuracy. In a nut-shell the numerical methods
presented in this thesis for solving convection-diffusion problems in differential
equations have been shown to be accurate and efficient over the conventional methods.
Above all, these methods are conceptually simple, easy to use and are readily adaptable

for computer implementation with a modest amount of modeling the problem.
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INTRODUCTION



INTRODUCTION

The present thesis entitled NUMERICAL SOLUTION OF SOME STEADY
STATE CONVECTION- DIFFUSION AND IMPACT PROBLEMS deals with the fluid
flow problems involving large Reynolds number and the non-linear wave prorogation in the
case of an impact problem. Convection-diffusion problems and impact problem have their
commonality in one aspect that both of them are convection-diffusion in nature. Convection
diffusion problems form a class of Singular perturbation problems. The numerical treatment
of these perturbation problems is far from trivial in view of the boundary layer behavior of
the solutions. In a singular perturbation problem there arises a governing differential
equation whose highest derivative is multiplied by a perturbation parameter£. The study of
numerical solution of singular perturbation problems has attracted researchers in numerical
analysis in view of the ever increasing efficiency of the high speed computers. The present
study is motivated mainly by the study of Stynes [66] who dealt with problems of this nature
and highlighted the notion of ‘artificial diffusion’.

In the existing literature, this is one of the highly fertile fields which is receiving
attention that it richly deserves. Perhaps the most common source of convection-diffusion
problems is due to the Navier — Stokes equations which are highly nonlinear when Reynolds
number is large. Morton, in his classic treatise [40], pointed out that this is by no means the
only place where they arise and listed ten examples involving convection-diffusion equations
starting from the drift-diffusion equations of semiconductor device modeling to the Black—
Scholes equation that arises in financial modeling. He also observed that accurate modeling
of the interaction between convective and diffusive processes is ‘the most ubiquitous and
challenging task’ in the numerical approximation of partial differential equations.

Convection-diffusion problems occur very frequently in the fields of science and
engineering such as fluid dynamics, specifically the fluid flow problems involving large
Reynolds number, problems in mass and heat transfer and problems dealing with chemical
reactions.

A problem which we shall be referring to as impact problem is also discussed in the thesis in
view of its commonality with the other problems studied in the thesis. In the impact

problem, a non-linear convection-diffusion problem is studied. When two objects with



distinct velocities come into contact with one another, an impact occurs and wave
propagation occurs in the collided bodies. The nonlinear wave propagation that occurs as a
result of the impact is modeled through nonlinear differential equation and this is studied by
reducing it to linear equation by Quasi-linearization technique.

In the steady-state convection-diffusion problem there arises a governing differential
equation in which the highest order derivative is multiplied with a perturbation or diffusion
parameter. Convection-diffusion problems form a class of singular perturbation problems. In
the impact problem the non-linear wave equation exhibits convection as well as diffusion
nature. An introduction to the problem is presented and the methodology adopted is
explained.

Convection is the process in which heat moves through a gas or a liquid as the hotter
part rises and the cooler, heavier part sinks, where as in the diffusion a gas or liquid diffuses
or is diffused in a substance, it becomes slowly mixed with that substance.

Singular perturbation problems occur very frequently in various fields of Science and
Engineering such as Fluid Dynamics, specially the fluid flow problems involving large
Reynolds number. In general, any differential equation in which the highest order derivative
is multiplied by a small positive parameter € (o<e<< 1) is called singular perturbation
problem. In fact, any differential equation whose solution Changes rapidly in some parts of
the interval are generally known as singular perturbation problem and also as boundary layer
problem. A boundary layer by definition is a narrow region, where the solution of a
differential equation changes rapidly. Further the thickness of the boundary layer tends to

zero as €—0.

Imagine a river flowing strongly and smoothly. Liquid pollution pours into the water
at a certain point. What shape does the pollution stain form on the surface of the river? Two
physical processes operate here: the pollution diffuses slowly through the water, but the
dominant mechanism is the swift movement of the river, which rapidly convects the pollution
downstream. Convection alone would carry the pollution along a one-dimensional curve on
the surface; diffusion gradually spreads that curve, resulting in a long thin curved wedge
shape. When convection and diffusion are both present in a linear differential equation and

convection dominates, we have a convection-diffusion problem.



DEFINITION

In this section we give briefly the definition of singular perturbation problem in its
simplest and most commonly used form. In general, any differential equation in which the
highest order derivative is multiplied by a small positive parameter € (0<e<< 1) is called
Singular perturbation Problem. Infact, any differential equation whose solution changes
rapidly in some parts of the interval is generally known as Singular Perturbation problem and
also called as Boundary Layer Problem. A Boundary Layer problem by definition is a
narrow region, where the solution of a differential equation changes rapidly. In this region
diffusion term dominates. Further the thickness of the boundary layer approaches to zero as

e—0.

MOTIVATION

Differential equations occur very frequently in the mathematical modeling of physical
problems in Science and Engineering. Since exact solutions for most of these problems are
not available, a resort to the approximation methods for getting the solution of such problems
is unavoidable. The availability of high speed digital computers has made it possible to take
such a task when the approximation method involves numerical computation. The most
commonly employed approximate methods, for solving such type of problems are the finite
difference method and the finite element method. Even though the finite element method is
somewhat difficult than the finite difference method from the point of view of computer
programming, it has certain inherent advantages, namely the approximation of solutions can

be obtained easily in more complicated regions etc.

Convection-diffusion problems occur very frequently in the field of Fluid dynamics
with Large Reynolds number, Heat and mass Transfer and Chemical Reaction problems. In a
differential equation the highest order derivative multiplied with a perturbation parameter €
which is positive and very close to zero and the first order derivative terms serves as
convective atmosphere. It means on most of the domain the solution has convection nature in
the sense that solution behaves well but in the sub-domain near to the boundary layer region

there exists a sub-region called narrow region where the gradient of the solution is large



indicating that diffusion effects in this region stating that there is a boundary layer for
specific values of the argument. The thickness of the boundary layer goes to zero as
perturbation parameter approaches to zero. In this boundary layer region there are possible
oscillations in the computed solution by employing numerical methods. The challenging task
here is to apply suitable numerical methods like finite difference methods, finite element
methods in order to get reasonable accuracy in the computed solution. We are selected most
of the problems in this thesis which admits analytical solutions. The reason behind this
choice is, we can compare the computed solution with the analytical solution.

We can see that the solution of convection-diffusion problem has a Convective nature
on most of the domain of the problem, and the diffusive part of the differential operator is
influential only in the certain narrow sub-domains. In the sub domain the gradient of the
solution is large. This nature is described by stating that the solution has a boundary layer.
The interesting fact that the elliptic nature of the differential operator is disguised on most of
the domain means that numerical methods designed for elliptic problems will not work
satisfactorily. In practice they usually exhibit a certain degree of instability. The challenge
then is to modify these methods into a stable form without neglecting their accuracy in
numerical methods.

A problem which we shall be referring to as impact problem is also discussed in the
thesis in view of its commonality with the other problems studied in the thesis. In the impact
problem, a non-linear convection-diffusion problem is studied. When two objects with
distinct velocities come into contact with one another, an impact occurs and wave
propagation exists in the collided bodies. The nonlinear wave propagation that occurs as a
result of the impact is modeled through nonlinear differential equation and this is studied by
reducing it to linear equation by Quasi-linearization technique.

It is well known that differential equations occur very frequently in the mathematical
modeling of physical problems in Science and Engineering. Since exact solutions for most
of these problems are not available, approximation methods for obtain the solution of such
problems is unavoidable.. The most commonly employed approximate methods, for solving
such type of problems are the finite difference method and the finite element method. Even
though the finite element method is somewhat more difficult than the finite difference

method from the point of view of computer programming, it has certain natural advantages



that the approximation of solutions can be obtained accurately even in more complicated
regions.

In this thesis, we applied finite difference methods to compute the solutions of some
such problems numerically. We observe that the solution of convection-diffusion problem
has a convective nature on a larger part of the domain of the problem, and the diffusive part
of the differential operator is influential only in a certain narrow sub-domain. In the sub
domain the gradient of the solution is large. This nature is described by stating that the
solution has a boundary layer. The numerical methods that are designed for solving such
elliptic differential operators will not work satisfactorily through out the domain since the
solution in general is well behaved in the convective region while it exhibits instability in the
boundary layer region where the equation is influenced by diffusion. The challenge then is
to modify these numerical methods into a form without neglecting the accuracy and obtain a

well behaved solution through out the domain.

REVIEW OF LITERATURE:

It is well known that differential equations occur very frequently in the mathematical
modeling of physical problems in Science and Engineering. Since exact solutions for most
of these problems are not available, approximation methods for getting the solution of such
problems is unavoidable. The availability of high speed digital computers has made it
possible to take such a task when the approximation method involves numerical computation.
The most commonly employed approximate methods, for solving such type of problems are
the finite difference method and the finite element method. Even though the finite element
method is somewhat more difficult than the finite difference method from the point of view
of computer programming, it has certain inherent advantages that the approximation of
solutions can be obtained accurately even in more complicated regions.

The study of the numerical solution of convection-diffusion problems goes back to
1950’s. Allen and Southwell [4] in 1955 initiated the numerical studies dealing with singular
perturbation problems while discussing the motion in two dimensions of a viscous fluid past
a fixed cylinder. Only in 1970’s, these studies acquired a research momentum that is
continuing till now. The one-sided difference scheme has been described by Dorr [16]

constructed a difference scheme which represents the rate of decay in the boundary layer



correctly for the homogeneous singular perturbations problems. In 1972, Finlayson reviewed
the method of weighted residuals and variational principles [20]. Hemker and Miller, in [24]
made a detailed study of numerical analysis of singular perturbation problems. Eckhaus, in
[19], exhaustively discussed the asymptotic analysis of singular perturbations. Keller [33]
made a numerical solution of two point boundary value problems. Douglas and Dupont
presented Galerkin methods for parabolic equations with nonlinear boundary conditions [17].
Doolan et al. [15] discussed some uniform numerical methods for problems with initial and
boundary layers.

Osher in [47] considered some nonlinear singular perturbation problems and he
discussed the one sided difference schemes. Ross in [57] derived the necessary convergence
conditions for backward schemes in two dimensional case. Carey and Pardhanani has studied
Multigrid Solution and Grid Redistribution for Convection Diffusion problem in [12]. Han
and Kellogg studied the differentiability properties of solutions of the two dimensional
convection diffusion equation in a square region in [23] in a two dimensional space.
Brandt and Yavneh observed the inadequacy of first order upwind difference schemes with
reference to certain recirculatory flows in [11]. Ross has presented ten ways to generate
uniformly convergent numerical schemes to solve singular perturbation problems in [58].
Stynes and Tobiska derived necessary conditions for uniform convergence for difference
schemes in two dimensional convection diffusion problems in [67]. Drofler in [18] obtained
uniform a priori estimates for singularly perturbed elliptic equations in multidimensions.
Shih and Elman developed some iterative methods for stabilized convection diffusion
problems in [63]. In this context it is worth mentioning that the survey paper by Kadalbajoo
and Reddy [30], gives an intellectually stimulating outline of the singular perturbation
problems and of fluid dynamical boundary layers. This survey paper will remain as one of
the most readable source on convection-diffusion (or singular perturbation) problems. In
2003, Kadalbajoo and Patidar made an exhaustive survey of singularly perturbed problems in
partial differential equations in [31] and presented the then existing state of art. Another
excellent survey article is due to Stynes [66], on steady state convection diffusion problems.

Herein the author highlighted the notion of artificial diffusion.



While the numerical analysis of singularly perturbed convection-diffusion problems
has received much attention in the recent years the main focus has been on the solution
behavior in the boundary layer region. Roos et al. in the reference[59] have given
interpretation about the nature of convection dominated flows with a physical interpretation.

Pearson [49] was perhaps the first to solve numerically linear convection-diffusion
type problems using variable mesh size in the finite difference scheme. Pearson [50] also
solved non-linear singular perturbation problems using variable mesh methods. Abrahamson
et. al. [1] have described the refinement of upstream one-sided difference scheme. A
modified upwind scheme for convective diffusion equations which combines the advantages
of being stable of second order is described by Axelsson and Gustafsson [7].

Convection-diffusion problems are solved by many researchers for the past five
decades which are the linearised equations from Navier —Stokes equations with a large
Reynolds number. Due to the high speed computers computations are made simple for large
amount of calculations. This survey cannot, for reasons of length, give a complete account of
the many numerical methods used to solve steady-state convection-diffusion problems.

Multi Grid Adaptive techniques for solving convection-diffusion problem have been
described by Brandt [11]. Multi-Grid adaptive technique is a general strategy of solving
continuous problems by cycling between coarser and finer levels of discretization. It
provides very fast general solvers together with nearly adaptive optimal discretization
schemes. In the process, boundary layers are automatically either resolved or skipped,
depending on a control function, which expresses the computational goal. The global error
decreases exponentially as a function of the overall computational work, in a uniform rate
independent of the magnitude of the singular perturbation terms. These methods are proved
to be of high order and uniformly stable. These schemes are applicable for higher order
dimensional problems. Hsiao, G.C. and Jordan, K.E [25] have studied the solutions to the
difference equations of singular perturbation problems. In [9] Bellman and Kalaba solved

non-linear singularly perturbed problem by applying quasi-linearization technique.

For a detailed theory and analytical discussion on singular Perturbation Problems one

may refer to the treatises and high level monographs: O’Malley[44] , O’Malley[45 ], Nayfeh



[41], Nayfeh [42] , Nayfeh [43] , Kevorkian and Cole [35] Bender and Orszag[ 10] , Smith
[64] , Meyer and Parter [37] , and Van Dyke [70].

For a detailled Numerical and Asymptotic discussion on Singular Perturbation
Problems one may refer to the books and high level monographs: Hemker and Miller [24] ,
Miller[38] , Miller [39] , Axelsson et al.[8] Doolan et. al. [15].

The literature in numerical methods could not have been what it is but for the
excellent monumental works of Meyer and Parter [37], Miller [38], Neyfeh [41,42], Protter
and Weinberger [53], Reddy [55], Smith [64], O’Malley [45, 46], II’in [27], Kevorkian and
Cole [36], Samarskii [60], Verfurth [71], Shashkov[62], Wrigglers [72], Jain [28] and
Quarteroni [54].

OUR PRESENT WORK:

Consider an elliptic operator in which the second order derivatives are multiplied by a
parameter € that is allowed to be close to zero. These derivatives model diffusion while the
first— order derivatives are associated with the convective or transport processes. In classical
problems where € is not close to zero, diffusion is the dominant mechanism in the model
and the first-order convective derivatives play a relatively minor role in the analysis. On the
other hand, when € is close to zero and the elliptic differential operator has convective
terms, the convective terms have a significant influence on the theoretical and numerical
solution of the problem and cannot be summarily dismissed as ‘lower—order’ terms. When €
is close to zero and the elliptic differential operator has convective terms, it is called a
convection diffusion operator. The problems involving these operators are called
convection-diffusion problems and these problems form a class of singular perturbation
problems. In this thesis, we applied finite difference methods to compute the solutions of
some such problems numerically. We observe that the solution of convection-diffusion
problem has a convective nature on a larger part of the domain of the problem, and the
diffusive part of the differential operator is influential only in a certain narrow sub-domain.
In the sub domain the gradient of the solution is large. This nature is described by stating that
the solution has a boundary layer. The numerical methods that are designed for solving such

elliptic differential operators will not work satisfactorily through out the domain since the
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solution in general is well behaved in the convective region while it exhibits instability in the
boundary layer region where the equation is influenced by diffusion.

A second- order differential operator in n- variables whose highest-order derivatives are

2
n u
~ Y a9 (1.1)
i,jzl 1o Xia Xj
where the aij are constants, is said to be elliptic if
LUR)
J_l 1] &1&) c Z § for all f andf (1.2)

where ¢ >0 is called an ellipticity constant. Consider the second-order differential operator

L in n- variables defined on some bounded domain Q with open connected set D by

au(x)

Lu(x)——% u(x) Z i (X)

+g(x) u(x) (1.3)
i,j=1 "ij 8X1 0Xj 1—1

where aij are constants. We assume that L is elliptic in the sense of (1.2). Denote the

closure of D by D and its boundary bydD, and let C, (s) denote the space of functions that

are defined on a set S and k-times differentiable on S.

In the differential operators in convection-diffusion problems the ellipticity constant
o can be close to zero. If the value of © is near zero, then the convergence of the computed
solution by employing numerical scheme is a challenging job. Taking this into account, we
employ a numerical method so that its solution is stable and appropriate. In this thesis an
attempt is made to solve convection-diffusion problem numerically to attain reasonable
accuracy for the solution near the boundary layer. Numerically computed solution is
compared with the analytical solution and found that the diffusion coefficient is significant
especially in the boundary layer region.

While using a uniformly convergent scheme for a convection— diffusion problem we

considered a general convection-diffusion equation
LUK)= -£U (X)+ax)U (x)+bx) Ux)=f(x) for0<x <1 (1.4)
with the Dirichlet’s boundary conditions Uuo0)=0)=0
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where 0 < € <<1, a(x) >a. > 0 and b(x) = 0 on [0,1] and presume that a(x) <1. Here L is the
differential operator. The above problem is solved by the method proposed by the II'in —
Allen-Southwell which is uniformly convergent method. The convergence criteria are
realized through computation, based on Roos et al.[59] for most of the values of the diffusion
coefficient. In this method Green’s function operator is used to find the new finite difference
scheme.

We have employed finite element method in this thesis to solve singularly perturbed
two point boundary value problems using cubic B splines. The finite element method
involves variational methods like Rayleigh-Ritz method, Least squares method, Petrov-
Galerkin method, Galerkin method, Collocation method etc. In finite element method,
approximate solution of a given differential equation is a linear combination of a set of basis
functions which constitutes a basis for the approximation space under consideration. We
have employed Galerkin method for solving certain class of singularly perturbed two point
boundary value problems with cubic B-splines as basis functions. The basis functions have
been redefined into a new set of basis functions which vanish on the boundary where the
Dirichlet type of boundary conditions is applied. A finer mesh has been taken near and
around a parameter & close to zero where the left boundary layer is located. Several
examples including linear and nonlinear cases have been considered for testing the efficiency
of the proposed method. The solution for a nonlinear problem is obtained as the limit of the
solution of a sequence of linear problems generated by quasi-linearization technique due to
Bellman and Kalaba [9]. The solutions obtained, by the method developed for the considered
examples have been compared with the exact solutions. We observed that the approximate
solutions obtained by the developed method are in good agreement with the exact solutions

of some known problems available in the existing literature.

Consider the following linear singular perturbed two-point boundary value problem

£y (X) +a(x)y (X) +bX)y(x)=c(x); 0<x <1 (1.5)
with y(0) =ypand y (1) =y,
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where &€ is a small positive parameter (0< £€<< 1) and yy, y; are given constants and a(x)
, b(x) and c(x) are assumed to be continuously differentiable functions in [0,1]. Further, we
assume that a(x) > M>0 throughout the interval [0, 1] where M is some positive constant.
This assumption purely implies that the boundary layer will be in the neighborhood of x=0.
Existing numerical methods produce good results only when we take step length of interval
h <€. This is very costly and time consuming process. Hence the researchers are
concentrating on developing the methods, which can work with reasonable step length h. For

this, nowadays researchers are adopting one of the following methods.

(i) The interval is subdivided into two regions [0,0 ] and [J, 1], where & is the point near
which the boundary layer is located. The region [0,8] is called inner region and the region
[8,1] is called outer region. The problem in the inner region is treated as an initial value
problem and the problem in the outer region is treated as a boundary value problem. The
initial value problem in the inner region problem is solved and terminal boundary condition
is obtained. Using this terminal boundary condition, the boundary value problem in the outer

region problem is solved.

(i) Using the variable mesh, one can take finer mesh around and near the point where the

boundary layer is located.

Since the finite element method can be easily adaptable with variable mesh, we intend

to use finite element method to solve the given singular perturbation problem.

For the case of single differential equation, it is shown in Douglas and Dupont [17]
that the cubic B- splines yield 4™ order accurate results. Accordingly, B-splines as basis

functions have been used by us in our work.

The existence of the cubic Spline interpolate S(x) to a function f(x) in closed interval
[0,1] for spaced knots 0 = Xp <x; < X2 < X3 < .... < Xp2 < Xp.1 < Xp =1 is established by
constructing it. The construction of S(x) is done with the help of cubic B-Splines. Introduce

six additional knots X 3 X 2, X_; X n+1 » Xns2 and X 43 such that
X 3<X <X <X and X p:3> Xpe2> X el > X,

Now the cubic B-splines Bi (x) , given in [13], are defined by
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=42 (x . — x)3 N
Bl'(x):r i (er—X) 7X€[X‘ 2 > X 2]

r=1-2 T (x;) o

=0, otherwise

where > (1.6)

(Xp —X)3 =(X; —X)3 JAf X 2 X

=0,1f x. <x

and [[(x) =(x - Xi_z)(X - Xi-l)(x - Xi)(X - Xi+l)(X - Xi+2) .

It can be shown that the set {B _(x), B ¢ (X), B 1(X), B 2 (X), B ; (X), B 1+1(X)} forms a basis
for the space S 3 ( @) of cubic polynomial splines [52]. Schoenberg [61] has proved that the

cubic B-splines are the unique non-zero splines of smallest compact support with knots at
X 3<X2<X_<X< Xp <Xptl <Xpt2 < Xp43-

Any cubic spline defined with a unique set of given knots [3] can be uniquely expressed as a

linear combination of B-spline basis set {B _;(x), B o (x), B 1(x), B 2(X), B ; (X), B n41(x)}

We develop a method based on Galerkin method with B-spines as basis functions for
solving a general linear singularly perturbed two point boundary value problem with left

boundary layer.

We discussed a numerical integration method in this thesis. This method reduces a
second order differential equation into a first order differential equation with a small
deviating argument. To set the stage for the numerical integration method, we consider the

following governing linear Convection-diffusion equation.

€y ‘(X)+ a(x)y ()+b(x) y(x)=f(x); 0Sx <1 (1.6(a))
withy (0)=a and y (1) =

where € is a small positive parameter called diffusion parameter which lies in the interval
0<€<<l1; a and B are given constants; a(x), b(x) and f(x) considered to be sufficiently
continuously differentiable functions in [0,1]. Furthermore, we assume that a(x) > M > 0
throughout the interval [0,1] in equation (1.6(a)), where M is some positive constant. This

assumption merely implies that the boundary layer will be in the neighborhood of x=0.
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Let & be a small positive deviating argument (0< 6 < 1). By applying Taylor series

expansions in the neighborhood of the point x, we have
, 52

y(x=8)=y(x)-8y (D)+—y ) (1.7)

Consequently applying equation (1.7) in Eq. (1.5) the second order derivative is
replaced by the first-order derivative with a small deviating argument . The resultant first
order differential equation is numerically solved by applying Simpson’s one-third rule to get
the three term recurrence relation. The three term recurrence relation is solved by Thomas
algorithm. The main advantage of this method is that it does not require very fine mesh size.

In this thesis we have considered a convection-diffusion problem in one-dimension
with variable coefficient wherein an artificial —diffusion term [66] is present. As a closed
form solution, in general, is not possible the classical Frobenious method of series solution
was used to solve the governing differential equation. Further the problem is also solved by
making use of a central difference scheme. The Frobenious series solution is numerically
computed and the results are compared with those obtained by central difference scheme.
The results are depicted through graphs and the results obtained by both the methods seem to
be in good agreement. It is observed that the artificial diffusion term plays a significant role
in the behaviour of the solution.

The governing equation of artificial diffusion-convection problem in one-dimension

is

2
(e Xy dTu AU u=1 withu(0)=0, u(1)=0 (1.8)
2 dx2 dx

Let pxF ——— ,q(x)F -——r(x)=

RN E RGN TR (N T

2 2 2

we can bring (1.8) to the standard form:

d2 u du

5 +p(x) —+q(x)u=r(x) withu(0)=0, u(l)=0 (1.9)
dx dx

The differential equation (1.9) is linear with variable coefficients. Closed form
solution for this equation seems to be out of reach. Hence we propose to solve by applying

series solution method due to Frobenious with x =0 as an ordinary point of (1.9). Method of
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series solution was used to solve the governing differential equation (1.9). Further the
problem is also solved by making use of a central difference scheme. The Frobenious series
solution is numerically computed and the results are compared with those obtained by central
difference scheme. The results are depicted through graphs and the results obtained by both
the methods seem to be in good agreement. It is observed that the artificial diffusion term
plays a significant role in the behaviour of the solution. The results are compared with the
results in Chapter-2. We have observed that artificial diffusion plays a dominant role in the
boundary layer region.

The convection-diffusion problem is extended to two-dimensional space. In two-
dimensional space the proposed problem is solved on a unit square mesh with the prescribed
boundary conditions by finite difference method where in central difference scheme is
employed. In the process finite difference scheme of Standard five point formula was
employed. Initial approximations to temperature distribution function were given on the
basis suitable to physical nature of the problem.

Here the governing differential equation in two dimensions is

—eAu(x,y) +axyy) Vu(xy) +bxy) ux.,y) = f(x,y)

on QcC R2 with u(x,y) = g(x,y) on oQ (1.10)
where 0 < € <<1, and the functions a, b and f which are assumed to be Holder continuous on
Q, the closure of Q. Here we also assume that b>0 on Q. Here Q is any bounded domain
in R* with a piecewise Lipschitz—continuous boundary 9Q. Let us suppose that g is
continuous except perhaps for a jump discontinuity at a single point. The results thus
obtained are plotted through graphs and the physical nature of the problem is discussed. It is
observed that there is a boundary layer at some specific values of arguments.

In this thesis a problem which is related to wave propagation is also studied. This
problem is taken up for study in view of its analogy with convection — diffusion problem.

When two bodies which have distinct velocities come into contact, an impact occurs.
The impact force is a function of time ‘t” which is acting like a compression force. The
impact time is very short and the stresses generated are high. We have studied non-linear
wave-propagation after impact that occurs in the bodies after impact. The governing equation

proposed by Gol’dberg has Non-linear convection-diffusion nature which is analogous to the
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nature of differential equations studied in the earlier chapters. The wave propagation in the
bodies is naturally dependent on the material of the bodies with which they are composed.
Here we considered two materials of same physical nature. Nonlinearity is studied after
impact. This chapter presents a numerical study of propagating pulses and harmonic waves
in nonlinear media using a Finite difference scheme. This study focuses on longitudinal,
one-dimensional wave propagation. In the finite difference scheme, non-linear system is

reduced to a linear system by applying Quasi-linearization method.

The governing non-linear wave equation which is developed by Gol’dberg (1961) is
2 u 2 0 2 u
I =y & (1.11)
2 € X 2
ot ox

with the prescribed physical conditions. This non-linear differential equation is made linear

Q

by applying quasi-linearization method. The resultant linear equation is solved by applying

central differencing scheme. The numerically computed results reveal the material nature.



17

STRUCTURE OF THE THESIS:
The thesis consists of five parts

Part-I consists of a single chapter, Chapter- 1 which is introductory in nature and
gives an introduction to the steady-state convection-diffusion problems and impact problem.
In the steady-state convection-diffusion problem there arises a governing differential
equation in which the highest order derivative is multiplied with a perturbation or diffusion
parameter. In the impact problem the non-linear wave equation exhibits convection as well
as diffusion nature. An introduction to the problems is presented and the methodology
adopted is explained.

Part II consists of Chapters 2-5.

In Chapter 2, we present a computational method to solve steady state convection —
diffusion problem. In convection-diffusion problem, in a larger part of the domain, transport
processes dominate where as diffusion effects restrict only to a relatively small portion of the
domain. This state of affairs means that one cannot depend on the elliptic nature of the
differential operator to ensure the convergence of standard numerical algorithms. In this
chapter, the asymptotic nature of solution to stationary convection-diffusion problem is
considered and a numerical technique to control the oscillatory behavior of the computed
solution in a boundary layer region at the specific value of the argument is proposed. This is
achieved through a stretched variable transformation.

We have solved the problem on steady state convection-diffusion by Finite difference
method where in a central difference scheme is employed. The same problem is also studied
by asymptotic expansions method. We observed that there is a right-boundary layer near
specific value of the argument. In this chapter the diffusion coefficient € is a small positive
parameter and coefficient of convection C is a parameter independent of €. Here C takes
values according to the choices of different mesh sizes.

In Chapter 3, we deal with a uniformly convergent scheme for Convection —Diffusion
problem. The above problem is solved by the method proposed by the II’'in —Allen, which is a
uniformly convergent method [26]. The convergence criteria is realized through computation
and based on the axioms proposed by Roos et al.[59], for lower values of the diffusion
coefficient. Under a certain condition, the solution is seen to be uniformly convergent for

any choice of the diffusion parameter. The study provides a first- order uniformly
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convergent method with discrete maximum norm. It was observed that the error decreases as
step size h gets smaller for smaller or larger values of the perturbation parameter where as for
the mid range values of the perturbation parameter the trend are reversed. An analysis is
carried out to check the validity of the solution with some existing analytical solutions
available. The uniformly convergent method gives better results than the finite difference
methods. The computed and plotted solutions of this method are in good agreement with the
exact solution available.

Chapter 4 is devoted to the application of finite element method to solve singularly
perturbed two point boundary value problems using cubic B- splines. The finite element
method involves variational methods like Rayleigh-Ritz method, Least squares method,
Petrov-Galerkin method, Galerkin method, Collocation method etc. In finite element
method, approximate solution of a given differential equation is a linear combination of a set
of basis functions which constitutes a basis for the approximation space under consideration.
In this chapter we have employed Galerkin method for solving certain class of singularly
perturbed two point boundary value problems with cubic B-splines as basis functions. The
basis functions have been redefined into a new set of basis functions which vanish on the
boundary where the Dirichlet type of boundary condition is defined. A finer mesh has been
taken near and around a parameter J close to zero where the left boundary layer is located.
Several examples including linear and nonlinear cases have been considered for testing the
efficiency of the proposed method. The solution for a nonlinear problem is obtained as the
limit of the solution of a sequence of linear problems generated by quasi-linearization
technique due to Bellman and Kalaba [9]. The solutions obtained, by the method developed
for the considered examples have been compared with the exact solutions. We observed that
the approximate solutions obtained by the developed method are in good agreement with the
exact solutions of some known problems available in the existing literature.

Chapter-5 is devoted to the study of a numerical integration method for solving
general steady-state convection-diffusion problems. In the fifth chapter the Numerical
Integration method is developed by introducing the deviating argument. In this process,
Simpson rule is applied to calculate the quadrature. The results thus obtained show good

agreement between the exact solution and the computed solution.
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In this Chapter the governing second-order differential equation is replaced by an
approximate first-order differential equation with a small deviating argument. Then,
Simpson one-third formula is used to obtain the three term recurrence relationship. Thomas
Algorithm is applied to solve the resulting tri-diagonal algebraic system of equations. The
proposed method is iterative on the deviating argument. The method is to be repeated for
different choices of the deviating argument until the solution profile stabilizes. The main
advantage of this method is that it does not require a very fine mesh size. To examine the
applicability of the method employed, we have solved several linear model problems with
left-end boundary layer or right —end boundary layer or an internal layer and presented the
numerical results. It is observed that the numerical integration method approximates the
exact solution extremely well.

In this context it is worth mentioning that the survey paper by Kadalbajoo [30], gives
an erudite exposition of the singular perturbation problems and their treatment on fluid
dynamical boundary layers. This survey paper will remain as one of the most readable
source on convection-diffusion (or singular perturbation) problems.

Part III consists of Chapters 6 and 7. Chapter 6 deals with a convection-diffusion
problem in one-dimension with variable coefficient wherein an artificial —diffusion term is
present. Stynes [66] introduced the notion of artificial diffusion with respect to a general
convection-diffusion problem to get a reasonably accurate solution in the boundary layer
region. The numerical artificial-diffusion controls the oscillations near the boundary layer
region.

As a closed form solution, in general, is not possible, the classical Frobenious method
of series solution was used to solve the governing differential equation in this chapter.
Further, the problem is also solved by making use of a central difference scheme. The
Frobenious series solution is numerically computed and the results are compared with those
obtained by central difference scheme. The results are depicted through graphs and the
results obtained by both the methods seem to be in good agreement. It is observed that the
artificial diffusion term plays a significant role in the behavior of the solution and reduces the

oscillations in the computed solution.

In Chapter-7 we present a numerical study of convection —diffusion problem in two-

dimensional space. It is solved on a unit square mesh with the prescribed boundary
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conditions by finite difference method wherein central difference scheme is employed. In the
process, finite difference scheme of standard five point formula was employed. Initial
approximations to temperature distribution function were given motivated by the physical
nature of the problem by intuition. The results thus obtained are plotted through graphs and
the physical nature of the problem is discussed. It is observed that there is a boundary layer
at the specific values of arguments.

Part IV consists of a single Chapter, Chapter 8. This chapter aims to study the
Numerical study of wave propagation in a non-linear medium due to impact.

When two objects which distinct velocities have come into contact, an impact occurs.
The impact force is a function of time‘t” which is acting like a compression force. The impact
time is very short and the stresses generated are high. We have studied non-linear wave-
propagation after impact that occurs in the bodies after impact. The governing equation
proposed by Gol’dberg has non-linear convection-diffusion nature which is analogous to the
nature of differential equations studied in the earlier chapters. The wave propagation in the
bodies is naturally dependent on the material of the bodies with which they are composed.

Here we considered two materials of same physical nature. Nonlinearity is studied
after impact. This chapter presents a numerical study of propagating pulses and harmonic
waves in nonlinear media using a Finite difference scheme. This study focuses on
longitudinal, one-dimensional wave propagation. In the finite difference scheme, non-linear
system is reduced to a linear system by applying Quasi-linearization method in which
iteration-across the time step concept is used. The results numerically obtained reveal the
material nature.

In this chapter we solved non-linear convection-diffusion type wave equation by
applying quasi-linearization technique. In this technique the successive approximation values
are calculated by iteration across the time step. The Governing equation (1.11) is the non-

linear wave - equation developed by Gol’dberg (1961). It can be easily noticed that this is

the well known one dimensional wave equation when 7 =o.
Part V consists of a single chapter, Chapter 9.
This chapter is devoted to present the main conclusions of the Thesis. We also present some

problems which deserve to be studied as a sequel to the present work.
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Some of the work is published in standard journals and most of the work is presented
in various conferences and symposia, the details of which are presented below:

The references are given at the end of the thesis in alphabetical order.

PAPERS PUBLISHED / COMMUNICATED / PRESENTED:
A part of the work presented in the thesis is published and most of the work is presented in
various conferences and symposia, the details of which are presented below:
PAPERS PUBLISHED:
1) “Computational method to solve steady-state convection-diffusion problem”
International Journal of Mathematics, Computer Sciences and informational
Technology Vol.1, No.1-2 January-December 2008, PP.245-254, ISSN 0974-5580

Serial publications.

2) “Numerical study of one-dimensional contact problem” International eJournal of

Mathematics and Engineering (2010) 104-114 ISSN 0976-1411.

3) “ Numerical study of convection-diffusion problem in two-dimensional space”
International Journal of research and reviews in applied science”.Vol.5, Issue-2,

November-2010
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PAPERS COMMUNICATED FOR PUBLICATION:

1)

2)

“Uniformly convergent scheme for Convection-Diffusion problem *, International

journal of applied mathematics and computation.

“Artificial diffusion-Convection problem in one-dimensional space . Applied

Mathematics and computation, Elsevier Publications.

PAPERS PRESENTED AT CONFERENCES

1)

2)

3)

4)

5)

Presented the paper entitled “COMPUTATIONAL METHOD TO SOLVE STEADY
STATE CONVECTION-DIFFUSION PROBLEM at 18" Congress of Andhra
Pradesh Society for Mathematical Sciences (APSMS) AT AVN COLLEGE
VISHAKAPATNAM, DECEMBER -2009.

Presented the paper Entitled “NUMERICAL STUDY OF ONE-DIMENSIONAL
CONTACT PROBLEM “at INDIAN INSTITUTE OF TECHNOLOGY
ROORKEE, December- 2009.

Presented the paper entitled “Artificial diffusion-convection in one dimension a
computational ~ approach” at INTERNATIONAL CONGRESS OF
MATHEMATICS, (ICM 2010) Hyderabad, India August 17-24, 2010

Presented the paper entitled “ NUMERICAL STUDY OF CONVECTION-
DIFFUSION PROBLEM IN TWO -DIMENSIONAL SPACE” at 19™ Congress of
Andhra Pradesh Society for Mathematical Sciences (APSMS) AT Jyothishmathi
Institute of Technology and Science Karimnager 12-14 NOVEMBER , 2010

Presented the paper entitled “Numerical study of wave propagation in a Non-linear

medium due to impact” at 55 ISTAM, NIT, HAMIRPUR, 17-21 December, 2010.
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CHAPTER-2

COMPUTATIONAL METHOD TO SOLVE STEADY STATE CONVECTION -
DIFFUSION PROBLEM

INTRODUCTION:

In convection-diffusion problem, transport processes dominate where as diffusion
effects restrict to a relatively small portion of the domain. This state of affairs means that
one cannot depend on the ellipticity nature of the differential operator to ensure the
convergence of standard numerical algorithms. In this chapter, the asymptotic nature of
solution to stationary convection-diffusion problem is considered and a numerical
technique to control the oscillatory behavior of the computed solution at the specific
value of argument is developed.

Consider the elliptic operator whose second-order derivative is multiplied by a
parameter € that is allowed to be close to zero. These derivatives model diffusion while
the first — order derivatives are associated with the convective or transport processes. In
classical problems where € 1is not close to zero, diffusion is the dominant mechanism in
the model and the first-order convective derivatives play a relatively minor role in the
analysis. On the other side, when € is near zero and the elliptic differential operator has
convective terms, it is called a convection-diffusion operator. The convective terms have
a significant influence on the theoretical and numerical solution of the problem and
cannot be summarily dismissed as ‘lower—order’ terms. The Convection-diffusion
problems form a class of singular perturbation problems. Here we applied finite
difference method to compute the solution numerically.

We can see that the solution of convection-diffusion problem has Convective nature
on most of the domain of the problem, and the diffusive part of the differential operator is
influential only in the certain narrow sub-domain. In the sub domain the gradient of the
solution is large. This nature is described by stating that the solution has a boundary
layer.

The interesting fact that the elliptic nature of the differential operator is disguised on

most of the domain means that numerical methods designed for elliptic problems will not
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work satisfactorily. In practice they usually exhibit a certain degree of instability. The
challenge then is to modify these methods into a stable form without neglecting their
accuracy in numerical methods.

A second- order differential operator in n- variables whose highest-order derivatives

are
2
n u
- > a. J
i,j=1 Y oxiox ] o
Where the ajjs are the constants, is said to be elliptic if
n > n 2
a..t:£:20 N
J= = forall & and & (2.2)

where ¢ >0, called the ellipticity constant. The differential operators in convection-
diffusion problems stretch these ellipticity constants close to zero. If the value of G is
near zero, then the convergence of the computed solution by employing numerical
scheme is a challenging job. Taking this into account, we develop a numerical method so
that its solution is stable and appropriate. This motivates us to solve convection-diffusion
problem numerically to attain reasonable accuracy for the solution near the boundary
layer.

To solve convection-diffusion problem one has to understand the concepts about
Maximum principles and asymptotic expansions. To carry out any numerical analysis we
want a priori knowledge of some bounds on the derivatives of the solution of this

problem.

MOTIVATION

The numerical solution of convection-diffusion problems goes back to the 1950s
Allen and Southwell 1955[4] but only in the 1970s did it acquire a research momentum
that has continued to this day. In the literature this field is still very active and as we
shall see much effort can be put in. Perhaps the most common source of convection-
diffusion problem is the Navier—Stokes equations having nonlinear terms with large
Reynolds number. Morton in his classic treatise [40] pointed out that this is by no means

the only place where they arise. He listed ten examples involving convection-diffusion
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equations that include the drift-diffusion equations of semiconductor device modeling
and the Black—Scholes equation from financial modeling. He also observed that accurate
modeling of the interaction between convective and diffusive processes is the most
ubiquitous and challenging task in the numerical approximation of partial differential
equations.

In this chapter, the diffusion coefficient € is small positive parameter and coefficient
of convection C will denote a generic constant that is independent of €. Here C takes

values according to different mesh sizes.

ANALYTICAL TOOLS
Consider the second-order differential operator L in n- variables defined on some

bounded domain €2 with open connected set D by

52 u(x)

- 3 o T IMOLL e
Lu(x) = ij=1 Yoxiodxj i=l X, 2.3)

where ajj’s are constants. We assume that L is elliptic in the sense of (2.1). Denote the
closure of D by D and its boundary bydD, and let C, (s) denote the space of functions

that are defined on a set S and k-times differentiable on S.

MAXIMUM PRINCIPLE
Let ue C°(D) N C*(D) satisfy the differential inequality Lu=0 on D. Suppose that
functions b; and g are bounded on D and g >0 on D. Suppose also that u=0 on dD then

u=0on D.
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FORMULATION OF THE PROBLEM

The two-point boundary value problem

Lu(x) = - eu”(x) + u'(x) = f(x) for 0 <x <1 2.4)
with ~ u(0)=0, u(1)=0

defines convection — diffusion problem. Here € is a very small positive parameter and f is
continuously differentiable in the closed interval [0,1]. The coefficient of the first-order
derivative is much larger in magnitude than the coefficient of the second-order derivative
i.e. Diffusion is the dominant mechanism in the model and the first-order convective
derivatives play a relatively minor role in the analysis. If we set €=0 then (2.4) becomes
a first order differential equation by bringing a phenomenal change. So we expect that
this problem is Singularly Perturbed. i.e. in a Singularly Perturbed problem, for x €[0,1]
near the boundary layer x =1 we have

lim lim YX)# lim lim u(X)
e—0x—x x—xe—0 2.5)

To get some immediate insight into the solution of (2.4), we select a simple case with
f(x)=1. Then the closed form solution of (2.4) takes the form

—(1-x)/e _ -l/e

—x-C € <x<
u(x)=x 1_ e for0<x <1
e

(2.6)

The graph of the equation (2.6) at some selected value of the parameter ¢ is displayed

below.
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Figure 2.1.
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It is clear that (2.5) holds well for the boundary layer at X = 1. This is a narrow region
where u is bounded and is independent of € but its derivative increases as € 0. The
asymptotic nature of solution to convection-diffusion problem will provide useful
information about boundary layer. The behavior of the derivatives of the solution of (2.4)
is critical for the numerical computing.

With certain exceptional combinations of the boundary conditions and the force
function f the problem (2.4) fails to be singularly perturbed. For instance consider
f(x) =1 and the boundary conditions are changed to u(0)=0, u(1) =1, then the solution of
(2.4) becomes the well-behaved function u(x)=x and condition (2.5) need not be taken. i.e
with this modified boundary conditions, the equation (2.4) becomes a regular
perturbation problem.

Consider an asymptotic expansion

— b n
u= X a0

(2.7)
for the solution u(x) of a boundary-value problem ( 2.4 ).
Substituting this in (2.4) we get
o0 " n o0 '

—€Xu (Xg + ¥ yg(®)=1(x)

n=0 n=0 (2.8)
Comparing the coefficients of powers of €, we get
gy (X)= f (), 1y (X) =1y (%), 15 (X) =1y (X)) (2.9)

Here (2.9) consists of first-order differential equations with two boundary conditions

un(0)=0, un(1)=0 V n. If we consider the condition u,(0)=0 and discard the condition
u,(1)=0, then we may be able to construct an asymptotic expansion. i.e., in forming the
asymptotic expansion, we can discard one boundary condition where a boundary layer

occurs. Now solve the equations (2.9) for u(x)

X

u, ()= [0t u,(x)=£(x)=£(0). u,(x)=f (x)-£(0)

0
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oo

Then (2.7) becomes  u(x)= Y (F" (x)—F"(0)) &" (2.10)
n=
Where
X
F(x)= [f(t)e
0
It is easily shown that
ux) = 3 (FY(x)= F(0)) &M +0( K) @.11)

n=0
for each k > 0. This function u(x) increases monotonically up to certain state 0S X <6 ,
where 06 is a constant in (0,1). for a choice of € and falls steeply before x=1 such that

u(1)=0 in the interval (5,1]. We say that at x=1, u(x) has a boundary layer.
—1/e

In solution (2.6) the term € is very small and can be ignored. To account the term

—(—-x)/&
€ ( ) of (2.6), the asymptotic expansion of (2.10) when f(x) =1 should contain a

d-x)

function of the variable € to control the oscillations.  Hence in the boundary

layer equation, we define the stretched variable p = I=x and rewrite the differential
£

equation as a function of p instead of a function of x.
Thus set u (p)=u(x) for 0 <p< 1 which corresponds to O<x<1. Now the differential
€

equation takes the form

—gu +u :_—l(u +u )=Lu
e PP P
the original asymptotic expansion Y. uy (X) e in (2.7) is satisfied
n=0

ie., LIS uy 0 ]=f.
n=0

So the correction v(p) that is to be added to this expansion must satisfy Lv=0 i.e.

v,,+v, =0. This second order differential equation needs boundary conditions on

v(p) at both p=0 (at x=1) and p=1/¢ (at x=0 ). We can now finally apply the original
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boundary condition u(1)=0, requiring that modified asymptotic expansion satisfies
this condition i.e
@ n
> un) g +v(0)=0
n=0
The two point boundary value problem that defines v is now completely specified and

can be solved explicitly.

(1-x) 5 un(l) gn
V)= e?v) ¢ ¢ n=0
(1-x) T

n n n
. néb(p D-F 0)¢

Adding this term to (2.10) the new proposed expansion is

X n n n (I-x)
_ 0 _
U asy(X) = }’lé() (F (X) F ( )) € _ e E

S FT0 - 0),"
n=0 2.12)

This is indeed a valid asymptotic expansion. i.e. u(X) ~Uasy.(X)

Thus equation (2.12) is an asymptotic expansion of u(x) that is valid for O<x=<I

FINITE DIFFERENENCE METHOD

Consider the steady-state convection-diffusion problem

Lu(x)z—gu"(x)Jru'(x) =f(x) ¢,

with u(0) =0, u(1)=0

0<x<1 (2.13)

where O<e<<l , a(x) > 0 assumed to be in COO[O,I].

Divide the interval [0, 1] into N the equidistant mesh points x; =ih for i=0, 1,2.....N
where h=1/N. Our aim is to compute approximate solution of (2.13) by introducing the
finite difference methods. The central and forward difference schemes of first and second

order derivatives of u are defined by
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u. 1—u. 1 u. 1—2u.+u. 1
u(x)=—FL _1=1 and v’(x)=—= 11+ (2.14)
2h h2
Where u; =u(x;). Using (2.14) in (2.13) for f(x) =1, we get
B T s ks U W TS ke P50 B S
h2 2h ’
The final difference scheme takes the form
+au —bu. ,=c
+1 1—1 (2.15)
Where
4e h+2¢ 2h2
a= , b= andc= =1 —
h—2¢ h—2¢ h—2¢ (2.16)

The boundary conditions u (0) = u (1) =0 are represented by up=0 and un=0. Equation
(2.15) represents a Tri-diagonal matrix of the form

Au =D (2.17)
where the coefficient matrix A is of order (n-1). The Non-Homogeneous linear system
(2.17) is solved by applying Thomas Algorithm. The main idea here is to select suitable
values of a, b so that the coefficient Matrix A is a Monotonic -Matrix.
The properties of Monotonic -Matrix are stated below.

1) All the off-diagonal elements must be either zeros or negative i.e. a;j <0 fori#j.

2) The coefficient matrix must be a diagonally dominant Matrix.
If these two conditions are satisfied then our numerical method is stable and consistent.
The concept incorporated in this problem reduces the oscillations in the computed

solution.

_on2
If d= Zh , D=d[1,1.1,..., 11"
h-2¢

. . - T
The solution matrix  u=[u, up, ..., un.1] . Hence we have
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-a -1 0 0 O O 0 O ul d
b -a -1 0 0 0 0 O u? d
O b —-a -1 0 0 0 O u3 d
O 0 b —-a -1 0 0 O ud d
u5
O 0 O O O b —-a -1 | ...
0 0 0 o0 0 O b -a] |[uN-1] _ |d]

To achieve the condition of M -matrix, the value of h is restricted as below

h<2e
Since a and b are to be negative. This is the condition for convergence.
Let us consider € =0.01, 0.05 with  h=0.01. Then the above inequality h < 2¢ is
satisfied. Here x takes the values from O to 1 with step size 0.01. By using these values
in Thomas Algorithm we can get the computed values as presented in the Table 2.1and

2.2 below and compared with the exact values with a specified parameter value of .
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Exact

Exact

S1.No. value Computed S1.No value Computed
(W) value( Uj) (W) value(Uj)

1 0.01000 0.010000 51 0.510000 0.510000
2 0.020000 0.020000 52 0.520000 0.520000
3 0.030000 0.030000 53 0.530000 0.530000
4 0.040000 0.040000 54 0.540000 0.540000
5 0.050000 0.050000 55 0.550000 0.550000
6 0.060000 0.060000 56 0.560000 0.560000
7 0.070000 0.070000 57 0.570000 0.570000
8 0.080000 0.080000 58 0.580000 0.580000
9 0.090000 0.090000 59 0.590000 0.590000
10 0.10000 0.10000 60 0.600000 0.600000
11 0.110000 0.110000 61 0.610000 0.610000
12 0.120000 0.120000 62 0.620000 0.620000
13 0.130000 0.130000 63 0.630000 0.630000
14 0.140000 0.140000 64 0.640000 0.640000
15 0.150000 0.150000 65 0.650000 0.650000
16 0.160000 0.160000 66 0.660000 0.660000
17 0.170000 0.170000 67 0.670000 0.670000
18 0.180000 0.180000 68 0.680000 0.680000
19 0.190000 0.190000 69 0.690000 0.690000
20 0.200000 0.200000 70 0.700000 0.700000
21 0.210000 0.210000 71 0.710000 0.710000
22 0.220000 0.220000 72 0.719999 0.720000
23 0.230000 0.230000 73 0.729999 0.730000
24 0.240000 0.240000 74 0.739999 0.740000
25 0.250000 0.250000 75 0.749999 0.750000
26 0.260000 0.260000 76 0.759999 0.760000
27 0.270000 0.270000 77 0.769999 0.770000
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28 0.280000 0.280000 78 0.779999 0.780000
29 0.290000 0.290000 79 0.789999 0.790000
30 0.300000 0.300000 80 0.799999 0.800000
31 0.310000 0.310000 81 0.809999 0.810000
32 0.320000 0.320000 82 0.819999 0.820000
33 0.330000 0.330000 83 0.829999 0.830000
34 0.340000 0.340000 84 0.839999 0.840000
35 0.350000 0.350000 85 0.849999 0.850000
36 0.360000 0.360000 86 0.859999 0.859999
37 0.370000 0.370000 87 0.869999 0.869999
38 0.380000 0.380000 88 0.879999 0.879994
39 0.390000 0.390000 89 0.889997 0.889983
40 0.400000 0.400000 90 0.899994 0.899955
41 0.410000 0.410000 91 0.909982 0.909877
42 0.420000 0.420000 92 0.919948 0.919665
43 0.430000 0.430000 93 0.929845 0.929088
44 0.440000 0.440000 94 0.939537 0.937521
45 0.450000 0.450000 95 0.948614 0.943262
46 0.460000 0.460000 96 0.955843 0.941684
47 0.470000 0.470000 97 0.957530 0.9202130
48 0.480000 0.480000 98 0.942592 0.844665
49 0.490000 0.490000 99 0.877777 0.622121
50 0.500000 0.500000 100 0 0

Table. 2.1
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S1.No. Exa(z1 i\)/alue Sngg(u[tjei()i SINo Exa(z1 i\)/alue (\jlzfﬁgatjel)d
1 0.01000 0.010000 51 0.509945 0.509900
2 0.020000 0.020000 52 0.519932 0.519900
3 0.030000 0.030000 53 0.529917 0.529900
4 0.040000 0.040000 54 0.539899 0.539900
5 0.050000 0.050000 55 0.549877 0.549900
6 0.060000 0.060000 56 0.559849 0.559800
7 0.070000 0.070000 57 0.569816 0.569800
8 0.080000 0.080000 58 0.579775 0.579800
9 0.090000 0.090000 59 0.589725 0.589700
10 0.10000 0.100000 60 0.599665 0.599700
11 0.110000 0.110000 61 0.609590 0.609600
12 0.120000 0.120000 62 0.619500 0.619500
13 0.130000 0.130000 63 0.629389 0.629400
14 0.140000 0.140000 64 0.639253 0.639300
15 0.150000 0.150000 65 0.649088 0.649100
16 0.160000 0.160000 66 0.658886 0.658900
17 0.170000 0.170000 67 0.668640 0.668700
18 0.180000 0.180000 68 0.678338 0.678400
19 0.190000 0.190000 69 0.687971 0.688000
20 0.200000 0.200000 70 0.697521 0.697600
21 0.210000 0.210000 71 0.706972 0.707000
22 0.220000 0.220000 72 0.716302 0.716400
23 0.230000 0.230000 73 0.725483 0.725600
24 0.240000 0.240000 74 0.734483 0.734600
25 0.250000 0.250000 75 0.743262 0.743400
26 0.260000 0.260000 76 0.751770 0.751900
27 0.270000 0.270000 77 0.759948 0.760100
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28 0.279999 0.280000 78 0.767723 0.767900
29 0.289999 0.290000 79 0.775004 0.775200
30 0.299999 0.300000 80 0.781684 0.781900
31 0.309999 0.310000 81 0.787629 0.787900
32 0.319999 0.320000 82 0.792676 0.793000
33 0.329998 0.330000 83 0.796627 0.797000
34 0.339998 0.340000 84 0.799238 0.799700
35 0.349998 0.350000 85 0.800213 0.800700
36 0.359997 0.360000 86 0.799190 0.799800
37 0.369997 0.370000 87 0.795726 0.796400
38 0.379997 0.380000 88 0.789282 0.790100
39 0.389995 0.390000 89 0.779197 0.780100
40 0.3999994 0.400000 90 0.764665 0.765700
41 0.409992 0.410000 91 0.744701 0.745800
42 0.419991 0.420000 92 0.718103 0.719400
43 0.429989 0.430000 93 0.683403 0.684800
44 0.439986 0.440000 94 0.638806 0.640300
45 0.449983 0.450000 95 0.582121 0.583700
46 0.45998 0.460000 96 0.510671 0.512300
47 0.4699750 0.470000 97 0.421188 0.422800
48 0.47997 0.480000 98 0.309680 0.311200
49 0.489963 0.490000 99 0.171269 0.172600
50 0.499955 0.499900 100 0 0

Table. 2.2
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f Computed solution
Exact solution
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Figure. 2.2
RESULTS AND DISCUSSION

The computed solution is fairly close to the exact solution in the interval (0,1) and in
the neighborhood of x=1 the computed solution slightly deviates from the Exact
solution because at x=1 there is a boundary layer. The solution may be termed as
smooth solution in the interval (0,0) where the exact and the computed values of u are
very close to each other and the remaining part of solution is called asymptotic solution.
Geometrically near at x=1 there is a chaotic behavior. It means we can observe finitely
many oscillations near x=1 but by M-Matrix criteria minimizes these un-even
oscillations. Here boundary layer dies off rapidly as h becomes small. u(x) can be written
as the sum of a well-behaved term and a boundary layer term. This decomposition of u is
visible in the Tables 2.1, 2.2. The solution has certain lower—order derivatives bounded
independent of the perturbation parameter. If other finite difference schemes are taken,
we can observe many oscillations in the solution which are not expected in the exact
solution.

This above numerical method indicates if there is too little diffusion then the
computed solution is often oscillatory, while if there is too much diffusion, then the

computed layers are smeared.
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CONCLUSIONS

Steady state convection —diffusion problem is solved in the one-dimensional space by
using Finite difference method. The solution of the problem is also compared with the
exact solution. For convergence criteria there is a condition established by the help of
Monotonic Matrix. The monotonic matrix is the coefficient matrix of the system of
equations (2.15) appeared after discretization. The numerical results are very fair upto
the reasonable accuracy in the smooth region. In the boundary layer region also we can
observe that analytical solution very fairly close to the computed solution. For very
lower values of the mesh we can get a stable and convergent solution. Asymptotic
analysis is also made to test the nature of the problem (2.1) and noticed that there is a
right boundary layer near the argument x=1. By enlarge we observed the equation (2.1) is
class of singularly perturbed problem so that in the inner region there are some possible

oscillations in the computed solution.
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CHAPTER-3

UNIFORMLY CONVERGENT SCHEME FOR CONVECTION -DIFFUSION
PROBLEM

In this chapter a study of uniformly convergent method proposed by II'in —Allen-
Southwell scheme was made. A condition was contemplated for uniform convergence in the
specified domain. The scheme developed is uniformly convergent for any choice of the
diffusion parameter. The method provides a first- order uniformly convergent method with
discrete maximum norm. Then an analysis carried out by [58] was employed to check the
validity of solution with respect to physical aspect and it was in agreement with the analytical
solution. The uniformly convergent method gives better results than the finite difference
methods. The computed and plotted solutions of this method are in good agreement with the

exact solution.

INTRODUCTION

Consider the elliptic operator whose second order derivative is multiplied by a
parameter € that is close to zero. These derivatives model diffusion while first-order
derivatives are associated with the convective or transport process. In classical problems ¢ is
not close to zero. To summarize when a standard numerical method is applied to a
convection-diffusion problem, when there is too little diffusion then the computed solution is
often oscillatory. There is a lot of work in literature dealing with the numerical solution of
singularly perturbed problems, showing the interest in this nature of problems in Kellog and
Tsan [10].

We can see that the solution of this problem has a convective nature on most of the
domain of the problem, and the diffusive part of the differential operator is influential only in
the certain narrow sub-domain. In this region the gradient of the solution is large. This

nature is described by stating that the solution has a boundary layer.
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MOTIVATION

The numerical solution of convection-diffusion problems dates back to the 1950’s [4]
but only in the 1970s it did acquire a research momentum that has continued to this day. In
the literature this field is still very active and as we shall see more effort can be put in.
Perhaps the most common source of convection-diffusion problem is the Navier — Stokes
equation having nonlinear terms with large Reynolds number.

In this chapter, the diffusion coefficient € is a small positive parameter and coefficient
of convection a(x) is continusely differentiable function. Under these assumptions,
Consider the convection —diffusion problem
Lu() = -g4" () +a(u (x)+bx)u(x) =f(x) for0<x <1 With the boundary
conditions u@)=u()=0 3.1
where 0 < ¢ <<1, a(x) >0 > 0 and b(x) =2 0 on [0, 1], we also assume that a(x) <1 for
stable solution in the computation. The above problem is solved by the method proposed by
the II'in —Allen uniformly convergent method. The convergence criteria are realized
through computation, based on explanation given by Roos et. al. [59] for lower values of the
diffusion coefficient. The reciprocal of the diffusion coefficient is called the Peclet number.

For a finite Peclet number the solution patterns matches with the exact solution.

Construction of a Uniformly Convergent Method

We describe a way of construction of uniformly convergent difference scheme. We
start with the standard derivation of an exact scheme for the convection-diffusion problem
(3.1).Introduce the formal adjoint operator L’ of L and for the sake of convenience select b=0
in (3.1)

Let 8; be local Green’s function of L° with respective to the argument x; ; 1.e.

% '

L g=-egi—agj=0 m(xi_l,xi)U(Xi ’Xi+1) (3.2)
Let us impose boundary conditions
gi(xi—l): gl(XH_l) =0 (3.2 (a))

and impose additional conditions
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(g (7 )-g; (xF))=1

Equation (3.1) is multiplied by 8; integrated with respective to x between the limits

Xi1 tO X 141 to get j (Lu) gjdx = f f g dx
X1 4
X,
j ( eu (x)+au (x))g dx = j fg dx (3.2(b))
4 N
Now L.H.S of (3.2(b)):
X X+ " ,
j (- gu (X)+au (X))g dx + )! (—eu (x)+au (x)gidx
X1 1

' X 1
= |(eurawg |+ (—eu vaw)g )| T
ceu s e rangon]
X' ' ' X+1 ' '
B} j (- gu+au)g1 dx — j (- 8u+au)gldx
1

[-S“( )+a“( )}gl[ ) [_8“("1_1)*3 u[xi—lﬂgi(xi—l)
J{ Su( 1+1) (X1+1j]gi(xi+1j_(_8“( ! Jras(x jjgl[ ﬂ

X, X. X
A4 ' 1
— j (au)gdx [ (au)gdx+ | (su) -dx+ j ( ) -dx
%1 % i b
X, X, X, X,
—(—su(x )+au(x))gi(x)] j (au) gldx- j (au)gldx+ j (€u)gidx+ j (€u)gidx
X1 N 1—1 5

= —eu (D) g () +eu (g, () +Heu (g, (011 1+[su<x)g'i(x>1§?“
1 1

% o g e
+Xij_l(—8gi -ag; Judx+ )gi (—8gi -ag)udx
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'

Since u is continuous on (Xi.; , Xi+1), we have
_ .Y - et ) — 7t
—[8 u(Xi)gl(Xi ) gu(xi-l)gl(xi—l)]+[8 u(Xi+1)g1(xi+1) eu (X1)gl(X1 )]

' ' i+l
=—egi(Xy_pPuy ruyteg (g Puy =1 X_flgi dx (3.3)
1_

The difference scheme of equation (3.2) is exact. We can evaluate each g i exactly

The solution of the equation (3.2) is given by
—aXx

g (x7)=c, +c, (%S)e g on (X Xis1) (3.4(a))

+ ' ' —¢ —ax
g(x")=c, +c, (?)e g on(Xif Xis1) (3.4(b))

' '

Here there are 4 unknowns ¢, ,C, ,C,,C, requiring 4 equations

g (x. ;)=0 (3.5)

g;(x, =0 (3.6)
1 _ 1 + _

e(g, (x.)-g, (x7))=1 (3.7)

and, from continuity of g; at x=x;

=g (xi 3.8
g, (x)=g xF) (3.8)
On imposing boundary conditions (3.5) and (3.6) on (3.4(a)), (3.4(b)) it can be seen

_aX. l

g. (X. ;)=¢c,+¢ (ﬁ) e & =0 (3.9

i Xp)=ately .
_aX.
_ ' ' j gﬂ%: _
g (xjyp)=cite (e =0 (3.10)

On differentiation of equations (3.4(a)), (3.4(b))

— —aXx.
ax i

g(x)=e, 5 (e & g(xf) =e)(- (e €

Then the equation (3.7) can be written in the following form



—ax. —ax. —ax.
i i Co i
€ ce € )=] —c,-c,=—e ¢
s(cze -C,e )y=1 =¢C, -C,
€

Using the fact gi (X; )= gi (X;I_ ) atx=x; in (3.9), (3.10) it follows

—axX. —axX.
1 1

+02(_T8)e € —[c'1+c'2(_78)e € 1=0

= ¢,

X.
. a5 ah . .
On assumption that o, = Py = above equations may be rewritten as
€ €

ax a(x.+h)

i —e €

e €

a(x.+h)
X. X.
AXin - £ o. +p. aXi o.-p.
e € —e 1 1 e & —e1 i
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(3.11)

(3.12)

Hence on transformation of the equations (3.9) to (3.12) in to the equations (3.13) to (3.16)

—&
c,+tc, (—)e % TPi=0
a

C‘l roy(CEye @i R _ g
a

] a

c,-c,=—¢e 1
€

-Qa.
1

(€, -c)+(c,-c)-e =0
a

On insertion of (3.15) into the equation (3.16) we can get

_ai _

(c,-ch+iefiCEeti=0
e a

|
(Cl'cl):_
a

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Subtracting the equation (3.14) from the equation (3.13), then by using equations (3.15) &
(3.17) it may be obtained

+p;

—QL:
1 1
-C, €
2

(c -c)+(c,e i _m)@f)zo

1 —0L; +p; 1 oopy —(o: +p;)y,—€
G pl-(cz-ge i) e (0 Pl))(?)=o

1

—0: + 0: -(o: +0:
E+(cze % pl—cze(m1 pl)+1

Lt Py g2 (3.18)
€ a

From (3.18) it follows

4P
c, =2 (d-e ) (3.19)
€ (epl —e Pi )

To find C, the value of C, is substituted in (3.15) , to get

p.
' 1 e 1
S L _2). (3.20)
CEPl e
Again employing the value of c; in (3.13) the value of c¢; can be obtained as
Pi_
¢ = l ,e {p- (3.21)
Next the value of ¢, isusedin (3.17) to obtain C,
_p.
1 e 1-1
c = (3.22)

a . -0.
(Pi —e P
Now on imposition of equations (3.19) to (3.22), on (3.4(a)), (3.4(b)) they may be rewritten

as
s B (l—e_pi) —g, X
0 —p. & p. —p (Glee (3. 23(a))
(el-e 1) (el-e 1)




+ _l e e 1 (l—e 1 ) —_g -axX.
gi(X )—a + < p. —p. (a)eS

i-e Piy eli-e ')

The derivatives of equations (3.23(a)) , (3.23(b)) are

o=l o o el
giX P ¢ (epi_e'Pi)
1 € (epi e pi)

Now from (3.23(c)) , (3.23(d)) and (3.7) it follows.

o = sh (1e'l)
g' X5 - € . -0. °
1 -1 P (epl-epl)
o .( ] 1 (epi ~1)
s g (X .
1 \1-1 € (epl-epl)
_p.
N LY
& &) T T -

el-e 1)
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(3.23(b))

(3.23(c))

(3.23(d))

(3.24(a))

(3.24(b))

Now by inserting values of g;_ and gi_ from (3.24(a)), (3.24(b)) in (3.2(a)) & (3.2(b)) it

may be obtained as
X, X

1

i+1 1 _ X1 ah .
f] gdx=f[ [ g dx+ | gf dx ] wherep, =—, 0, =—+
€

X -1 %
X. p. Q. -p.
11 el-l el (l-e 1) -g =3X
= + — d
= .f [ _p‘ € p _p‘ (a)e € ] X +

x. , & P
i-1 (el-e 1) el-e 1)
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p

-axj (l_epl ) —ah
(e,

)

i a.
zum%e i
a p. -p. a € (epl -e-pi

+ [ -1)]

e o "™ e M- e (e iye Ti-1)
a p.  -p. +[_2e € e ( p.  -p. )]
a el-e 1)

=
=
~

o
—

1

—_
~

p. p.
el 1) o le D _gh(el-l) (3.25)

. p. p. a P
el-e 1) (el-e 1) (e 1+1)
here p=—-
The equation (3.25) is the II'in-Allen-Southwell scheme.
This method is tested for a linear problem by applying a mixture of perturbation

parameter values with in the defined range. It is observed from the numerical results that

I’in-Allen scheme is converging uniformly in the defined domain. Especially in the
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boundary layer region, it is appreciable thing that the scheme is uniformly converging to the

exact solution.

For testing the algorithm outlined above we are considered the two-point boundary value
problem —&u (X)+u (x)=2x withu(0)=u(1)=0 (3.26)
is considered with 0 < a(x) <1 so that a right-boundary layer exists.

The analytical solution of (3.26) is

_ (1+28)  (1+2¢)
1 1
e€-1) (e -1)

s 2

u(x) e +x“+2ex, O<e<kl (3.27)

The computational method is executed with various choices of the diffusion
coefficient by applying forward difference method, upwind method, central difference
method and the II’in-Allen scheme. The results obtained are presented in the table 3.1(a) to

3.1(d).



Case 1:

£=0.05
X Forward Backward Central Allen-II’in Exact solution

scheme scheme Scheme scheme

0 0 0 0 0 0
0.01 | 0.001000 | 0.001200 0.001100 0.001103 0.0010999
0.02 | 0.002200 | 0.002600 0.002400 0.002407 0.0023999
0.03 | 0.003600 | 0.004200 0.003900 0.005613 0.0038999
0.04 | 0.005200 | 0.006000 0.005600 0.005613 0.005599
0.05 | 0.007000 | 0.008000 0.007500 0.007517 0.0074999
0.06 | 0.009000 | 0.010200 0.009600 0.009620 0.0095999
0.07 | 0.011200 | 0.012600 0.011900 0.011923 0.0118999
0.08 | 0.013600 | 0.015200 0.014400 0.014427 0.0143999
0.09 | 0.016200 | 0.018000 0.017100 0.017130 0.0170999
0.1 0.019000 | 0.02100 0.020000 0.020033 0.019999
0.2 0.058000 | 0.062000 0.060000 0.060067 0.06509985
0.3 0.123999 | 0.122998 0.119999 0.120100 0.127098
0.4 0.204997 | 0.203985 0.19995 0.200129 0.209091
0.5 0.305981 | 0.304899 0.299960 0.300127 0.2999500
0.6 0.426848 | 0.425363 0.419700 0.419895 0.41963099
0.7 0.566617 | 0.563036 0.557771 0.557961 0.5572733
0.8 0.716180 | 0.703420 0.703422 0.703453 0.6998527
0.9 0.790694 | 0.756763 0.776690 0.756044 0.75113119
0.91 | 0.780071 | 0.745514 0.768388 0.767636 0.737271
0.92 |0.762193 | 0.728374 0.754197 0.753337 0.7463138
0.93 | 0.735194 | 0.704127 0.732763 0.731799 0.7166433
0.94 | 0.696747 | 0.671311 0.702433 0.701373 0.706286
0.95 |0.643937 | 0.628171 0.661185 0.660049 0.6866133
0.96 | 0.573125 | 0.572603 0.606549 0.605369 0.646286
0.97 | 0.479760 | 0.502081 0.535505 0.534331 0.592832
0.98 | 0.358154 | 0.413575 0.444363 0.44321 0.4342072
0.99 |0.20119 0.167335 0.182736 0.182179 0.17849617
1 0 0 0 0 0

Table 3.1 (a)
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Case: 2
When £=10" :
< Forward Backward | Central Allen-1I’in | Exact
scheme scheme Scheme | scheme solution
0 0 0 0 0 0
0.01 | -0.12447 0.000220 | 0.000120 | 0.00020 0.00012
0.02 | -0.99928 0.000640 | 0.000440 | 0.000600 0.00044
0.03 | -1.01274 0.001260 | 0.000960 | 0.001200 0.00096
0.04 | -1.01058 0.002080 | 0.001680 | 0.002 0.00168
0.05 | -1.00993 0.003100 | 0.002600 | 0.0030 0.002600
0.06 | -1.00080 0.004320 | 0.003720 | 0.04200 0.0037199
0.07 | -0.00858 0.005740 | 0.005040 | 0.005600 0.005040
0.08 | -0.99616 0.007360 | 0.006560 | 0.007200 0.006560
0.09 | -0.99354 0.009180 | 0.008280 | 0.009000 0.00828
0.1 -0.99072 0.011200 | 0.010200 | 0.01100 0.01020
0.2 |-0.97362 0.042400 | 0.040400 | 0.042000 0.04040
0.3 |-0.92442 0.093600 | 0.090600 | 0.093000 0.0906
04 |-0.85522 0.164800 | 0.160800 | 0.164000 0.160800
0.5 |-0.76602 0.256000 | 0.251000 | 0.255000 0.251000
0.6 |-0.65682 0.367200 | 0.361200 | 0.366001 0.3611999
0.7 |-0.52762 0.498400 | 0.491404 | 0.497001 0.49140
0.8 |-0.37842 0.649600 | 0.641805 | 0.648001 0.641600
0.9 |-0.20922 0.820800 | 0.823617 | 0.819001 0.81180
0.91 |-0.19120 0.839020 | 0.812195 | 0.837201 0.829920
0.92 | -0.17298 0.857440 | 0.874828 | 0.855601 0.848240
0.93 | -0.15456 0.876060 | 0.826879 | 0.874201 0.866760
0.94 | -0.13594 0.894880 | 0.945302 | 0.893001 0.885480
0.95 | -0.11712 0.913899 | 0.814667 | 0.912001 0.904400
0.96 | -0.00981 0.933114 | 1.058120 | 0.931201 0.92352
0.97 | -0.07888 0.952469 | 0.740940 | 0.950601 0.9428399
0.98 | -0.05946 0.971384 | 1.265210 | 0.970201 0.9623599
0.99 | -0.02002 0.91816 1.683413 | 0.990001 0.9820345
1 0 0 0 0 0

Table.3.1 (b)
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When &=107"*

Forward Backward Central Allen-1I’in Exact
X scheme scheme Scheme scheme solution
0 0 0 0 0 0
0.01 |-1.020404 | 0.000202 -0.03588 | 0.000200 0.000102
0.02 | -1.009895 | 0.000604 0.00187 0.000600 0.000404
0.03 | -1.009597 | 0.001206 -0.03661 | 0.001200 0.000906
0.04 | -1.008994 | 0.002008 0.00466 0.002000 0.001608
0.05 | -1.008192 | 0.003010 -0.03666 | 0.003000 0.0025100
0.06 |-1.00719 0.004212 0.00839 0.004200 0.0036199
0.07 | -1.005988 | 0.005614 -0.03605 | 0.007200 0.0049140
0.08 | -1.004586 | 0.007216 -0.01306 | 0.007200 0.006416
0.09 | -1.002984 | 0.009018 -0.03479 | 0.009000 0.00818
0.1 |-1.001182 |0.011020 0.01869 0.011000 0.01002
0.2 |-0.972162 | 0.042040 0.06165 0.042000 0.040040
0.3 |-0.923142 | 0.093060 0.13098 0.093000 0.09006
0.4 |-0.854122 | 0.164080 0.22981 0.164000 0.16008
0.5 |-0.765102 | 0.255100 0.36280 0.255000 0.250100
0.6 |-0.656082 | 0.366120 0.53694 0.366000 0.360120
0.7 |-0.527062 | 0.497140 0.76261 0.497000 0.490140
0.8 |-0.378042 | 0.648100 1.05533 0.648000 0.640160
0.9 |-0.209022 | 0.819180 1.43826 0.819000 0.81018
0.91 |-0.191020 | 0.837382 0.13857 0.837200 0.828282
0.92 | -0.172818 | 0.855784 1.52845 0.855600 0.846584
0.93 | -0.154416 | 0.874386 0.11939 0.874200 0.865086
0.94 | -0.135814 | 0.893188 1.62392 0.893000 0.883788
0.95 |-0.117012 | 0.912190 0.09635 0.912000 0.902690
0.96 | -0.098010 | 0.931216 1.72504 0.931200 0.921792
0.97 | -0.078808 | 0.950616 0.06906 0.950600 0.941094
0.98 | -0.059406 | 0.970216 1.83223 0.970200 0.9605959
0.99 | -0.020002 | 1.008987 0.03709 0.990000 0.980298
1 0 0 0 0 0

Table. 3.1 (¢)
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Case: 4:
When £=107
Forward Backward Central Allen-1I’in Exact

X scheme scheme Scheme scheme solution
0 0 0 0 0 0
0.01 | -1.011037 | 0.000200 -0.818348 0.00200 0.000100
0.02 | -1.009825 | 0.000600 0.003681 0.000600 0.0121022
0.03 | -1.009426 | 0.001201 -0.820841 0.001200 0.0144024
0.04 | -1.008825 | 0.002001 0.008188 0.002000 0.0169026
0.05 | -1.008025 | 0.003001 -0.822561 0.003000 0.0196028
0.06 | -1.007025 | 0.004201 0.013522 0.004200 0.022503
0.07 | -1.005825 | 0.005601 -0.082350 0.005600 0.0256032
0.08 | -1.004424 | 0.007202 0.019682 0.007200 0.0289034
0.09 | -1.002824 | 0.009002 -0.823680 0.009000 0.0324036
0.1 -1.001024 | 0.011002 0.026669 0.01100 0.0361028
0.2 ]-0.972021 0.042004 0.074019 0.042000 0.0841058
0.3 -0.923018 | 0.093006 0.142077 0.193000 0.1521078
04 |-0.854015 | 0.164008 0.230871 0.264000 0.2401097
0.5 -0.765012 | 0.255010 0.340432 0.355000 0.3481117
0.6 |-0.656009 | 0.366011 0.470792 0.466000 0.4761138
0.7 |-0.527007 | 0.497013 0.621983 0.697000 0.6241158
0.8 |-0.378005 | 0.648014 0.794038 0.74800 0.7921178
0.9 |-0.209002 |0.819016 0.986993 0.819000 0.81001
0.91 |-0.191002 | 0.837216 -0.168016 0.837200 0.827004
0.92 |-0.172802 | 0.855616 1.028095 0.855600 0.848282
0.93 | -0.154402 | 0.874216 -0.135937 0.874200 0.8650680
0.94 | -0.135801 0.89016 1.070035 0.893000 0.873788
0.95 | -0.117001 0.912016 -0.103095 0.912000 0.900691
0.96 | -0.098001 0.931216 1.112814 0.931200 0.920006
0.97 | -0.078801 0.950616 -0.069491 0.950600 0.940002
0.98 | -0.059401 0.970216 1.156430 0.970200 0.9600231
0.99 | -0.039800 1.008987 -0.035126 0.99000 0.980098
1 0 0 0 0 0

Table. 3.1(d)
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Error Analysis:

The present scheme is first-order uniformly convergent with the discrete maximum norm.

Max [u( x;)—u; <Ch
1

The region of the solution u is divided into two parts
1) Smooth region with bounded derivatives.

2) Boundary layer region with chaotic behavior where in u = v+z , v is a boundary layer

function and z is the smooth function. The bound on the smooth function ‘ Zj ‘ has a

factor gl_j .



56

The calculation of ‘Z (xi) - z,

is now considered. The corresponding consistency
error “Ci‘ is estimated with the help of Taylor series, proposed by H.G. Roos et. al. [59]

which gives the inequality

%41 3 "
eil<c ] (g‘ A ‘ +a‘z ) ‘)dt
%i-1

aoh 1-x.
<Ch+C sinh(—>—)exp(-a, L)
IS €

An application of the discrete comparison principle indicates the increase of power of €

aO h 1-x.
z(x.)—z.‘ <Ch+C sinh(-0—)exp(-a 1) fori= 12 3......n
177 € 0 ¢

i.e.,

for € < h that can be easily obtained

<Ch.

Z(Xi) - Zi

In the second case h < ¢ , using the inequality 1—e"Y< ctfort>0 the desired estimate

canbe putas | z(xj)-Z, |<Ch
h2

Similarly | V(xj)- vV, |[<C - <Ch as proposed by Kellogg [32, 34]
+¢&

This shows that II’'in-Allen scheme is uniformly convergent of first order.
In the above scheme the value of a(x) the convection coefficient is less than or equal

to unity, then the scheme converges faster to the exact solution.



57

RESULT ANALYSIS

We have solved the proposed convection-diffusion problem which is linear and has a
right boundary layer region by using forward difference scheme, upwind scheme, central
difference scheme and II’in- Allen scheme by selecting the fine mesh size h = 0.01 and
allowed the diffusion coefficient to take different values. We have selected € = 0.05, 0.001,
0.0001, 0.00001.

1) For € =0.05 all the schemes behave similarly in the smooth region as well as in the
boundary layer region.

2) For € = 0.001 forward scheme is not matching with the exact solution , upwind
scheme converging to exact solution well and the central difference scheme converges in the
smooth region and oscillates in the boundary layer. where as II’in scheme converges
uniformly in the entire region.

3) For ¢ = 0.0001, 0.00001 forward scheme diverges, central scheme oscillates.
Upwind scheme has produced good numeric results in the specified domain. But at the
boundary i.e. near to the point x=1 the upwind scheme is not matching with the exact
solution. The solution of the upwind scheme is not uniformly convergent with the discrete
maximum norm, where as the proposed scheme is uniformly convergent of first order even
for lower values of € through out the domain.

4) For finite value of the Peclet number II’in-Allen scheme behaves well with the
exact solution in the region [0,1].

5) The standard finite difference scheme of upwind and central scheme on equally
spaced mesh does not converge uniformly. Because, the point wise error is not necessarily
reduced by successive uniform improvement of the mesh in contrast to solving unperturbed
problems. The standard central difference scheme is of order O(hz). It is numerically
unstable in the boundary layer region and gives oscillatory solutions unless the mesh width is
small comparatively with the diffusion coefficient but it is practically not possible as
diffusion coefficient is very small.

6) For any value of x in [0,1] , a(x) <1 II’'in- Allen scheme converges uniformly. This

has been thoroughly verified through computation.
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CONCLUSIONS

In this chapter a method developed by II’in- Allen-Southwell scheme is applied to a
convection-diffusion problem which is linear in nature. It has right-boundary layer near the
argument x=1. This method is employed to the two-point boundary value problem with
Dirichlet’s boundary conditions. The same problem is also solved numerically by Forward
difference method, central difference method and upwind scheme. It is noticed that II’in-
Allen scheme converges uniformly throughout the region for any choice of the diffusion
coefficient for a finer mesh. The other Finite difference methods do not converge uniformly.
The advantage of this method is that, even in the boundary layer region it has uniform
convergence. For mid values of the perturbation parameter the convergence in the computed
solution is a little bit slower comparatively with the other perturbed parameter values. In this
method we contemplated a condition on convection coefficient so that the proposed method

is fast convergent to the exact solution.
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CHAPTER-4

GALERKIN METHOD FOR SOLVING CERTAIN CLASS OF SINGULARLY
PERTURBED TWO POINT BOUNDARY VALUE PROBLEMS WITH CUBIC
B-SPLINES

INTRODUCTION

Singular perturbed two-point boundary value problems have been solved by Galerkin
method with cubic B-Splines as basis functions. The basis functions have been redefined
into a new set of basis functions which vanish on the boundary where the Dirichlet type of
boundary conditions is defined. A finer mesh has been taken near and around & where the
left boundary layer is located. Several examples including linear and nonlinear have been
considered for testing the efficiency of the proposed method.

Differential equations occur very frequently in the mathematical modeling of physical
problems in Science and Engineering. Since exact solutions for most of these problems are
not available, a resort to the approximation methods for getting the solution of such problems
is unavoidable. The availability of high speed digital computers has made it possible to take
such a task when the approximation method involves numerical computation. The most
commonly employed approximate methods, for solving such type of problems are the finite
difference method and the finite element method. Even though the finite element method is
somewhat difficult than the finite difference method from the point of view of computer
programming, it has certain inherent advantages, namely the approximation of solutions can
be obtained easily in more complicated regions etc.

The flexibility of the finite element method lies in the replacement of the domain of a
problem by a mathematical model with a finite number of sub-domains which constitute the
given domain. Any physical problem, mathematically modeled, can be solved by the finite
element method.

In Galerkin method, the residual is made orthogonal to the basis functions. In a
Galerkin method, a weak form of approximate solution for a given differential equation is

exists and unique under appropriate conditions irrespective of properties of a given
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differential operator and weak solution is also a classical solution of the given differential
equation provided sufficient attention is given to the boundary conditions [20, 55]. In this
chapter we employed Galerkin method to approximate the solution of a given differential
equation.

Many research workers use the Galerkin method for solving boundary value problems
and initial-boundary value problems [20, 17]. In most cases the solution is a smooth function
which is piecewise polynomial. To find approximate numerical solution to a given
differential equation by Galerkin method, one needs a set of basis functions belonging to the
space which contains all measurable admissible functions that vanish on the boundary of the
domain, where the Dirichlet type of boundary conditions were given on the given
differential equation.

In this chapter, we employed Galerkin method to solve a certain class of singular
perturbation problems with B-splines as basis function. Infact, any differential equation
whose solution changes rapidly in some parts of the interval is generally known as singular
perturbation problem and also as boundary layer problem. A boundary layer by definition is a
narrow region, where the solution of a differential equation changes rapidly. Further the
thickness of the boundary layer tends to zero as €—=0.

Consider the following linear singular perturbed two-point boundary value problem

ey () +a(x)y (x)+bx)y(®)=c(x); 0<x<I
with y(0) =ypand y(1) =y,

where £ is small positive parameter (0< £€<< 1) and yp, y; are given constants, a(x) , b(x)
and c(x) are assumed to be continuously differentiable functions in [0,1]. Further, we assume
that a(x) > M>0 throughout the interval [0, 1] where M is some positive constant. This
assumption solely implies that the boundary layer will be in the neighborhood of x=0.
Existing numerical methods produce good results only when we take step length of interval
h < €. This is very costly and time consuming process. Hence the researchers are
concentrating on developing methods, which can work with reasonable step length h. For
this, nowadays researchers are adopting one of the following methods.

(i) The interval is subdivided into two regions [0, ] and [d,1] , where & is the point

near which the boundary layer is located. The region [0,8] is called inner region and the
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region [0,1] is called outer region. The problem in the inner region is treated as an initial
value problem and the problem in the outer region is treated as a boundary value problem.
The initial value problem in the inner region problem is solved and terminal boundary
condition is obtained. Using this terminal boundary condition, the boundary value problem
in the outer region problem is solved.

(ii) Using the variable mesh, one can take finer mesh around and near the point
where the boundary layer is located.

Since the finite element method can be easily adaptable with variable mesh, we intend
to use finite element method to solve the given singular perturbation problem.

For the case of single differential equation, it is shown in Douglas and Dupont[17]
that the cubic B-splines yield 4™ order accurate results. Accordingly, B-splines as basis
functions have been used by us in our work.

The existence of the cubic- spline interpolate S(x) to a function f(x) in closed interval
[0,1] for spaced knots 0 = Xp <X; < X2 < X3 < .... < X p2 < X p < X , =1 is established by
constructing it. The construction of S(x) is done with the help of cubic B-Splines. Introduce
six additional knots X 3 X 2, X_; X pn+1 » Xns2 and X 43 such that
X 3<X <X <X and X p:3> Xp2> X el > X,

Now the cubic B-splines Bi (x), given in [13], are defined by

r=i+2(x —x)3
B.x)= Y —L— xelx.
! r=i-2 H(Xr) !

=0, otherwise

2% 40]

where

(xr—x)?’:(xr—x)3

=0,if x <x
r

Jf x 2x
r

and [[(x)=(x - X 2)(X -xi_l)(x-xi)(x -xi+1)(x -Xi+2)
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It can be shown that the set {B _;(X), B ¢ (X), B 1(X), B 2 (X),..... B, (X), B ns1(X)}
forms a basis for the space S 3 ( ) of cubic polynomial splines [52]. Schoenberg [61] has
proved that the cubic B-splines are the unique non-zero splines of smallest compact support
withknots at X 3<X 2 <X.1<X0< Xp <Xpsl < Xps2 < Xpa3-

Any cubic spline defined with a unique set of given knots [3] can be uniquely
expressed as a linear combination of B-spline basis set:

{B.1(x),Bo(x),Bi(x),B2(x), ... Bn(x), Bnu(x)}

We develop a method based on Galerkin method with B-splines as basis functions for

solving a general linear singular perturbed two point boundary value problem with left

boundary layer by considering

€ y' '(X) +a(x) y'(x) +b(X)y(x)=c(x); O0<x<1

With y(0) = yo and y(1) =y,

Where € is small positive parameter (O< € << 1) and yp , y; are given constants and a(x) > 0
throughout the interval [ 0,1 ].

We consider some examples of linear and nonlinear singular perturbation problems
with left boundary layer. The solution for a nonlinear problem is obtained as the limit of
solution of a sequence of linear problems generated by quasi-linearization technique [9]. The
solution obtained, by the method developed in this chapter, for the considered examples have
been compared with the exact solutions. We observed that the approximation solutions
obtained by the developed method are in good agreement with the exact solutions of the

problems.

LINEAR SINGULAR PERTURBED TWO-POINT BOUNDARY VALUE
PROBLEMS WITH LEFT BOUNDARY LAYER

We now develop a Galerkin method with B-splines as basis functions for solving

linear singular perturbed two-point boundary value problems with left-boundary layer.

ey (x) +a(x)y(x) +b(x)y(x) = c(x); 0<x<I @.1)
With y(0) = yo and y(1) = y; (4.2)
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Where € is a small positive parameter( 0< £<< 1) and yop , y; are prescribed values and
a(x) >0 throughout the interval [ 0,1 ].
We subdivide the interval [ 0, 1] into subintervals by the set of n+1 distinct grid points X, X;
1D @ R X, suchthat 0 =X <X 1<X2<.......<X, =1

For the system (4.1) and (4.2) the boundary layer will be in the neighborhood of x =0.
Suppose that the boundary layer is located around and near the point x = 8. Take the finer
mesh around and near x= J such that the minimum of the step lengths of the subintervals is
greater thane. The procedure for finding the parameter 0 is discussed in [24]. Introduce six
additional knots X 3, X 2, X_1 X n+1 » Xns2 and X 43 such that
X3<Xp<X.1<Xqo and X p3> Xp2> X a1 > X

With these grid points, the basis set of cubic B-splines {B .i(x), B o (x), B i(x), .. B
n+1(X)} has been defined. Let the approximate solution to the system (4.1) and (4.2) be given
by

n+1
Y0 = 3 a Bi(x) (4.3)
=1
where o, are the nodal parameters to be determined.

Since we want to solve the system (4.1) and (4.2) by the Galerkin method with cubic
B-splines as basis functions, the cubic B-splines should vanish on the boundary where the
Dirichlet type of boundary conditions is mentioned. But in this set of cubic B-spine basis
functions: B .{(x), B ¢ (x), B 1(X), B 2 (X), ..... B (X) and B ,;+1(x) are not vanishing at one of
the boundary points. So there is a necessity of redefining the basis functions into a new set
of basis functions which vanish on the boundary since Dirichlet type of boundary conditions
are specified on the boundary.

Using the definition of B-splines and the boundary conditions (4.2), we get the

approximation y(x) , given by the equation (4.3) , at the boundary points as

y(0)=y(x,)=a, B ,(x,)+0,B,x,)+a, B,(x,) =Yy, 4.4)
and
y(l) = y(Xn ) = a‘n-l Bn—l (Xn ) + a‘n Bn (Xn ) + a‘n+1 Bn+1 (Xn ) = yl (45)

From the above equations we get
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1
a_y = B_l(XO) { Yo~ % BO(XO)—alBl(XO) }and
1
o =———{y;~ B, (n)=anBy(xy))
n+l Bn+l(Xn) 1 "n-1"n-1

Substituting these values of &_, and «,,, in (4.3) we get the approximation for y(x) as

n ~
yx)=wx)+ X aij(X)

(4.6)
j=0
Where
(=0 (LB (% (4.7)
X)= X .
n+l1
B—I(XO) Bn+1(Xn)
Bo&o
B.(x )=B.(X)— 4.8(a
0 )=By-p 5B (0 (4.8(2))
-10
B,x )=B;(x)————B_,(x) (4.8(b))
B_ (x,)
-170
Ei (0=B, (x), fori=23,...n-2 (4.8(c))
- B &)
B, x)=B _ (0o-—2=L1p (4.8(d)
B (x_)
n+1"n
i B (x )
B x )=Bn(X)—B—(X)Bn+1(X) (4.8(e))
n+1""n
Here the new set of basis functions are Ej (x),j=0,1,2,3....., n and they vanish on the
boundary. w(x) defined in (4.7) takes care of the boundary conditions ( 4.2 )
Applying the Galerkin method with the redefined set of basis functions
§j x),j=0,1,2,....... n to the system (4.1) and (4.2) we get
[{ey "B, (0dx+a()y (0B, ()+bry() B, (0}dx= " [ec()B, (0. @)

fori=0,1,2....... n
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Integrating by parts the first term on the left hand side of the above equation

Xn " ~ ' ~ X Xn [ d]§1 Xn [ dBl
| ey x)B.(x) dx=egy (x)B.(x) I{* - [ ey (x)—dx = — [ gy (x)—dx
X0 1 1 0 X0 dx X0 dx (4.10)

for 1=0,1,2,3,.....n
Substituting (4.10) in (4.9) we get

i dweo dBJ v 4 )
j {— 8 ax dx + Z (x — ]+a(x)B x)[ + Z a — ]+b(x)B x)[wx)+ Z o.B. (x )] }dx
*0 = j= j=0J
Xn ~ _ 4.11)
= [ e(x)B. (x)dx for i=0,1,2,3.............. n
XO !
The above equation can be written as
X X,
n dB dBJ dB dW(X) dB
Z (x { | [-e— +a(X)B (X)—+b(x)B (X)B x)]dx}= j{C(X)B x)+¢
i=0 9 dx dx X dx dx
0 0
dw(x)
—a(x) B. (X) b(x)w(x)B x)}dx fori=0,1,2,3......... n “4.12)
The system of equations (4.12) can be written in the matrix form as
Ka=f (4.13)
xn  dB. dB. _ dB. L
where K=[k, 1, k= | [Fe——T+a(B. 0 —T+bxB. 0B.(01dx  (4.14)
X0 dx dx 1 dx 1 J
fori=0,1,2......... n, j=0,1,2........ n, f=[fi]
*n dw(x) 4B; () d
f.= I {c0B,(0+2 wix) —ap g (0= bWB, (x) }dx (4.15)
X dx dx dx
fori=0,1,2,3......... n
O =[O, 0,0, o ]T 4.16)
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A typical integral element in the matrix K, given in equation (4.14) is

-1 *m+1
Z_ Im where Im: | si(x)sj(x) z(x)dx 4.17)

0 X
m

n

m

and S5 x), sj (x) are the basis functions Ei(x) or their derivatives

It may be noted that  1p; =0, if ( X, ,, X, ) N(X; 5, X, )N (X, X00) = @

Thus the stiff matrix K is a seven diagonal band matrix. The integral element (4.17)
is evaluated by using the four Point Gauss-Legendre quadrature formula. The nodal
parameter vector & has been obtained from the system (4.13) by using the band matrix
solution package.

To test the efficiency of the proposed method described in this chapter for solving the
singular perturbation two point boundary value problems with left boundary layer, we
considered some linear and non-linear problems. In all the selected examples, we have taken

h = min (lengths of subintervals of the given domain).

Example 4.1

Consider the following homogeneous singular perturbation problem
ey (X)+y (x)—y(x)=0, 0<x <1 4.18)
with y(0)=1 and y(1)=1 (4.19)

The exact solution for the above system is given by

@2 —1)e 1 y—e 1Ty M2%
y(x)= (4.20)
(emz_eml)
where _ —1+1+4e m _ —1-+1+4e
1 2¢ 72 2¢

We have solved the problem (4.18) and (4.19) with €= 107 and € =10 respectively. The
approximate solutions obtained by the proposed method are compared with the exact solution
in tables 4.1 (a) and 4.1 (b) for €= 10% and € =10 respectively. From the results we can

conclude that the approximation is in good agreement with the exact solution.



=107 h=0.0015 5=0.01

X Approximate solution | Exact solution
0.00000 | 1.0000000 1.0000000
0.00200 | 0.4568041 0.4543111
0.00400 | 0.3800441 0.3812461
0.00600 | 0.3728526 0.3720173
0.00750 | 0.3709753 0.3713630
0.00900 | 0.3718539 0.3716499
0.01050 | 0.3720383 0.3721471
0.01200 | 0.3727582 0.3726917
0.01350 | 0.3732188 0.3732477
0.01500 | 0.3738213 0.3738067
0.01750 | 0.3747340 0.3747413
0.02000 | 0.3756694 0.3756784
0.04000 | 0.3832526 0.3832599
0.06000 | 0.3910117 0.3909945
0.08000 | 0.3988778 0.3988851
0.10000 | 0.4069450 0.4069350
0.15000 | 0.4277724 0.4277777
0.20000 | 0.4497036 0.4496879
0.25000 | 0.4727157 0.4727203
0.30000 | 0.4969481 0.4969324
0.35000 | 0.5223812 0.5223845
0.40000 | 0.5491560 0.5491404
0.45000 | 0.5772646 0.5772666
0.50000 | 0.6068492 0.6068334
0.55000 | 0.6379137 0.6379146
0.60000 | 0.6706011 0.6705877
0.70000 | 0.7410415 0.7410401
0.80000 | 0.8189113 0.8188942
0.90000 | 0.9049323 0.9049277
1.00000 | 1.0000000 1.0000000

Table- 4.1(a)
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£=10"*

h=0.00015 6 =10.009:

X Approximate solution | Exact solution
0.00000 | 1.00000 1.00000
0.00020 | 0.4560560 0.4535159
0.00040 | 0.3783315 0.3796358
0.00055 | 0.3713096 0.3707004
0.00070 | 0.3684529 0.3687498
0.00085 | 0.3685201 0.3683575
0.00100 | 0.3682148 0.3683130
0.00115 | 0.3683900 0.3683459
0.00130 | 0.3683679 0.3683962
0.00150 | 0.3684776 0.3684686
0.00175 | 0.3685433 0.3685606
0.00200 | 0.3686297 0.3686527
0.00500 | 0.3697476 0.3697602
0.01000 | 0.3716192 0.3716135
0.01500 | 0.3734570 0.3734760
0.02000 | 0.3753495 0.3753479
0.03000 | 0.3791019 0.3791198
0.04000 | 0.3829309 0.3829296
0.06000 | 0.3906467 0.3906645
0.08000 | 0.3985607 0.3985557
0.10000 | 0.4065937 0.4066062
0.15000 | 0.4274547 0.4274513
0.20000 | 0.4493461 0.4493649
0.25000 | 0.4724050 0.4724020
0.30000 | 0.4966005 0.4966201
0.35000 | 0.5220817 0.5220797
0.40000 | 0.5488243 0.5488446
0.45000 | 0.5769824 0.5769815
0.50000 | 0.6065399 0.6065609
0.550000 | 0.6376565 0.6376569
0.60000 | 0.6703249 0.6703469
0.65000 | 0.7047110 0.7047127
0.70000 | 0.7408174 0.7408404
0.75000 | 0.7788171 0.7788202
0.80000 | 0.8187230 0.8187471
0.85000 | 0.8607160 0.8607209
0.90000 | 0.9048215 0.9048464
0.95000 | 0.9512262 0.9512342
1.00000 | 1.00000 1.00000

Table-4.1 (b)
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Example 4.2

Consider the following non- homogeneous singular perturbation problem

€y”(x)+y'(x)=l+2x, 0<x<l1 4.21)
with y(0)=0andy(1)=1
—X
y(x) = x(x+1—28)+(2€_1)(1__xe ‘) (4.22)
(1-e€)

We have solved the problem (4.21) with £= 107 and & =10 respectively. The approximate

solutions obtained by the proposed method compared with the exact solution (4.22) in tables
42(a) and 4.2(b) for €= 10? and £ =10™ respectively. From the results we can conclude

that the approximation is in good agreement with the exact solution.



Casel :£=107 ,h=0.0015 and &=0.009

X Approximate solution | Exact solution
0.00000 | -0.00000002 0.00000000
0.00200 | -0.85699360 -0.86093540
0.004000 | -0.97758870 -0.97571300
0.00600 | -0.98817260 -0.98950220
0.00750 | -0.99050180 -0.98990680
0.00900 | -0.98847780 -0.98881390
0.01050 | -0.98753940 -0.98738320
0.01200 | -0.98575430 -0.98587390
0.01350 | -0.98437370 -0.98434340
0.01500 | -0.98276670 -0.98280470
0.01750 | -0.98022520 -0.98022870
0.02000 | -0.97763900 -0.97764000
0.04000 | -0.95647660 -0.95648000
0.06000 | -0.93447790 -0.93452000
0.08000 |-0.91175710 -0.91176000
0.10000 | -0.88816940 -0.88820000
0.15000 | -0.82579450 -0.82580000
0.20000 | -0.75836100 -0.75840000
0.25000 | -0.68599440 -0.68600000
0.30000 | -0.60856180 -0.60860000
0.35000 | -0.52619370 -0.52620000
0.40000 | -0.43876260 -0.43880000
0.45000 | -0.34639280 -0.34640000
0.50000 | -0.24896340 -0.24900000
0.55000 | -0.14659230 -0.14660000
0.60000 | -0.03916838 -0.03919995
0.70000 | 0.19060910 0.19060000
0.80000 | 0.44043510 0.44040000
0.90000 | 0.71021060 0.71020000
1.00000 | 1.00000000 1.00000000

Table-4.2(a)
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Case ii: £=10", h=0.0015 and & = 0.009

X Approximate solution | Exact solution
0.00000 | 0.00000000 0.00000000
0.00020 | -0.86029370 -0.86429180
0.00040 | -0.98317150 -0.98108800
0.00055 | -0.99422230 -0.99516390
0.00070 | -0.99867910 -0.9981880
0.00085 | -0.99851080 -0.99874600
0.00100 | -0.99893080 -0.99875380
0.00115 | -0.99859070 -0.99863870
0.00130 | -0.99856280 -0.99849630
0.00150 | -0.99830530 -0.99829780
0.00175 | -0.99809630 -0.99804730
0.00200 | -0.99785460 -0.99779640
0.00500 | -0.99481750 -0.99477600
0.01000 | -0.98971440 -0.98970200
0.01500 | -0.98462950 -0.98457800
0.02000 | -0.97942300 -0.997940400
0.03000 | -0.96895580 -0.96890600
0.04000 | -0.95822740 -0.95820800
0.06000 | -0.93626150 -0.93621200
0.08000 | -0.91342900 -0.91341600
0.10000 | -0.88986090 -0.88982000
0.15000 | -0.82734430 -0.82733000
0.20000 | -0.75988980 -0.75984000
0.25000 | -0.68736340 -0.68735000
0.30000 | -0.60990980 -0.60986000
0.35000 | -0.52738350 -0.52737000
0.40000 | -0.43992980 -0.43988000
0.45000 | -0.34740370 -0.34739000
0.50000 | -0.24994970 -0.24990000
0.550000 | -0.14742380 -0.14741000
0.60000 | -0.03996952 -0.03991995
0.65000 | 0.07255605 0.07256994
0.70000 | 0.19001050 0.19006000
0.75000 | 0.31253600 0.31255000
0.80000 | 0.43999070 0.44004000
0.85000 | 0.57251580 0.57253010
0.90000 | 0.70997110 0.71001990
0.95000 | 0.85249320 0.85251000
1.00000 | 1.00000000 1.00000000

Table-4.2(b)
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Example 4.3
Consider the following homogeneous singular perturbation problem
sy"(x)+(1—%)y‘(x)—%y(x)=0, 0<x<l1 (4.23)
with y(0) =0and y(1) =1 (4.24)
The exact solution for the above system is given by
2
—(x L)
yx) = ——-— ¢ (4.25)
2-x 2

We have solved the problem (4.23) and (4.24) with €= 10%and e=10" respectively. The
approximate solutions obtained by the proposed method compared with the exact solution
(4.25) in tables4.3 (a) and 4.3(b) for €= 10° and £= 10" respectively. From the results we

can conclude that the approximated solution is in good agreement with the exact solution.



When £=102, h=0.0015 and & = 0.01:

X Approximate solution | Exact solution
0.00000 | 0.00000000 0.00000000
0.00200 | 0.43143500 0.43276520
0.00400 | 0.49348850 0.49180750
0.00600 | 0.50033520 0.50025390
0.00750 | 0.50265150 0.50160160
0.000900 | 0.50278040 0.50219720
0.01050 | 0.50345490 0.50262470
0.01200 | 0.50370730 0.50301490
0.01350 | 0.50416470 0.50339720
0.01500 | 0.50451180 0.50377820
0.01750 | 0.50516460 0.50441360
0.02000 | 0.50580300 0.50505050
0.04000 | 0.51095780 0.51020410
0.06000 | 0.51620030 0.51546390
0.08000 | 0.52159140 0.52083330
0.10000 | 0.52706180 0.52631580
0.15000 | 0.54130300 0.54054050
0.20000 | 0.55630370 0.55555560
0.25000 | 0.57219510 0.57142860
0.30000 | 0.58898430 0.58823530
0.35000 | 0.60682340 0.60606060
0.40000 | 0.62574110 0.62500000
0.45000 | 0.64590950 0.64516130
0.50000 | 0.66738650 0.66666670
0.55000 | 0.69037260 0.68965520
0.60000 | 0.71496650 0.71428570
0.70000 | 0.76985300 0.76923080
0.80000 | 0.83382150 0.83333330
0.90000 | 0.90940120 0.90909090
1.00000 | 1.00000000 1.00000000

Table-4.3(a)
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When £=10*, h=0.00015 and &= 0.009

X Approximate solution | Exact solution
0.00000 | 0.00000000 0.00000000
0.00020 | 0.43043570 0.43237560
0.00040 | 0.49204900 0.49093850
0.00055 | 0.49769060 0.49809260
0.00070 | 0.50003340 0.49971850
0.00085 | 0.50006230 0.50011070
0.00100 | 0.50038530 0.50022740
0.00115 | 0.50032800 0.50028260
0.00130 | 0.50042680 0.50032410
0.00150 | 0.50044830 0.50037520
0.00175 | 0.50053190 0.50043790
0.00200 | 0.50059910 0.50050050
0.00500 | 0.50134340 0.50125310
0.01000 | 0.50258850 0.50251260
0.01500 | 0.50387380 0.50377830
0.02000 | 0.50512970 0.50505050
0.03000 | 0.50770910 0.50761420
0.04000 | 0.51028380 0.51020410
0.06000 | 0.51555930 0.51546390
0.08000 | 0.52091040 0.52083330
0.10000 | 0.52640750 0.52631580
0.15000 | 0.54061920 0.54054050
0.20000 | 0.55565320 0.55555560
0.25000 | 0.57150760 0.57142860
0.30000 | 0.58833400 0.58823530
0.35000 | 0.60614000 0.60606060
0.40000 | 0.62509890 0.62500000
0.45000 | 0.64523990 0.64516130
0.50000 | 0.66676450 0.66666670
0.55000 | 0.68973150 0.68965520
0.60000 | 0.71438070 0.71428570
0.65000 | 0.74081240 0.74074070
0.70000 | 0.76932000 0.76923080
0.75000 | 0.80006340 0.80000000
0.80000 | 0.83341220 0.83333330
0.85000 | 0.86961480 0.86956520
0.90000 | 0.90915200 0.90909090
0.95000 | 0.95240890 0.95238100
1.00000 | 1.000000000 1.00000000

Table-4.3(b)
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Example 4.4

Consider the non-linear singular perturbation problem

ey (x)+2y (x)+e’ =0, 0<x<1 (4.26)
with y(0)=0and y(1)=0 (4.27)

Applying Quasi-linearization technique [9] to the equation (4.26) with the boundary

conditions (4.27) , we get a sequence of linear problems as

n 1

ey, (O+2y  +e’ Ty =y —De’T, r=0,123.. (4.28)

We solved the system of equations (4.28) along with the boundary conditions (4.27) by the
Galerkin method by taking £=10" and £ = 10,
For the above problem (4.26) with (4.27) , we have chosen Bender and Orszag’s uniformly

valid approximation for comparisons[10]

2 —2x
y(x)=log———e ¢ log2.
I+x
The approximate solution obtained by the proposed method with & =107 and £=10" are
compared with Bender and Orszag’s uniformly valid approximation in tables 4.4(a) and 4.4

(b) respectively.



£=10", h=0.0015 and & = 0.01

X Approximate solution | Bender and Orszag’s
Solution
0.00000 | 0.00000002 0.00000000
0.00200 | 0.65748040 0.67845370
0.00400 | 0.70612440 0.68892260
0.00600 | 0.66894180 0.68716080
0.00750 | 0.69315830 0.68567500
0.000900 | 0.67522500 0.68418740
0.01050 | 0.68431480 0.68270190
0.01200 | 0.67576530 0.68121860
0.01350 | 0.67898120 0.67973750
0.01500 | 0.67481950 0.67825860
0.01750 | 0.67409990 0.67579850
0.02000 | 0.67159250 0.67334460
0.04000 | 0.65224490 0.65392650
0.06000 | 0.63139740 0.63487830
0.08000 | 0.61466250 0.61618610
0.10000 | 0.59493630 0.59783700
0.15000 | 0.55188670 0.55338530
0.20000 | 0.50765000 0.51082560
0.25000 | 0.46869290 0.47000360
0.30000 | 0.42775760 0.43078290
0.35000 | 0.39185340 0.39304260
0.40000 | 0.35379040 0.35667490
0.45000 | 0.32049830 0.32158360
0.50000 | 0.28491780 0.28768210
0.55000 | 0.25391780 0.25489220
0.60000 | 0.22074560 0.22314350
0.70000 | 0.16161750 0.16251890
0.80000 | 0.10290410 0.10536050
0.90000 | 0.05045704 0.05129331
1.00000 | 0.00000000 0.00000000

Table-4.4( a)

76



When € =10, h = 0.00015 and

6 =0.009

X Approximate solution | Bender and Orszag’s
solution
0.00000 | 0.00000001 0.00000000
0.00020 | 0.66487960 0.68025180
0.00040 | 0.71735530 0.69251470
0.00055 | 0.68253430 0.69258580
0.00070 | 0.70516570 0.69244680
0.00085 | 0.69029840 0.69229750
0.00100 | 0.70000280 0.69214770
0.00115 | 0.69327410 0.69199780
0.00130 | 0.69723960 0.69184800
0.00150 | 0.69440290 0.69164830
0.00175 | 0.69625960 0.69139870
0.00200 | 0.69628190 0.69114920
0.00500 | 0.69256170 0.68815960
0.01000 | 0.68608380 0.68319680
0.01500 | 0.68313440 0.67825860
0.02000 | 0.67649420 0.67334460
0.03000 | 0.66833750 0.66358840
0.04000 | 0.65701630 0.65392650
0.06000 | 0.63951640 0.63487830
0.08000 | 0.61878140 0.61618610
0.10000 | 0.60188630 0.59783700
0.15000 | 0.55582390 0.55338530
0.20000 | 0.51506570 0.51082560
0.25000 | 0.47210980 0.47000360
0.30000 | 0.43478810 0.43078290
0.35000 | 0.39490450 0.39304260
0.40000 | 0.36047190 0.35667490
0.45000 | 0.32323650 0.32158360
0.50000 | 0.29129870 0.28768210
0.55000 | 0.25636300 0.25489220
0.60000 | 0.22660280 0.22314350
0.65000 | 0.19368250 0.19237190
0.70000 | 0.16583970 0.16251890
0.75000 | 0.13470030 0.13353140
0.80000 | 0.10855740 0.10536050
0.85000 | 0.07900877 0.07796153
0.90000 | 0.05435734 0.05129331
0.95000 | 0.02640168 0.02531781
1.00000 | 0.00000000 0.00000000

Table-4.4 (b)
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CONCLUSIONS

Convection-diffusion problems form a class of singular perturbation problems.
Singular perturbed two-point boundary value problems have been solved by Galerkin method
with cubic B-Splines as basis functions. The basis functions have been redefined into a new
set of basis functions which vanish on the boundary where the Dirichlet type of boundary
conditions is applied. A finer mesh has been taken near and around & where the left
boundary layer is located. Many examples including linear and nonlinear problems have
been considered for testing the efficiency of the proposed method. The proposed Galerkin
method has given the computational results which are very much close to the analytical
solutions which are available in the literature for a fine mesh size h. Though the diffusion
coefficient value allowed to take very lower, the convergence existed to the reasonable
accuracy through out the region. Byandlarge this method is very efficient method and easily
implemented on a digital computer by writing the suitable numerical code. From the results
we observed that the approximation solutions obtained by the developed method are in good

agreement with the exact solutions of the selected problems.
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CHAPTER-5

NUMERICAL INTEGRATION METHOD FOR STEADY -STATE CONVECTION-
DIFFUSION PROBLEM

INTRODUCTION

In this chapter, a numerical integration method is presented for solving a general
steady-state convection problem or singularly perturbed two-point boundary value problem.
The governing second-order differential equation is replaced by an approximate first-order
differential equation with a small deviating argument. Then the Simpson one-third formula
is used to obtain the three term recurrence relationship. The proposed method is iterative on
the deviating argument. To test and validity of this method we have solved several model
linear problems with left-end boundary layer or right-end boundary layer or an internal layer
and offered the computational results.

Convection-diffusion problems occur very frequently in the fields of science and
engineering such as fluid dynamics, specifically the fluid flow problems involving large
Reynolds number and other problems in the great world of fluid motion. The numerical
treatment of singular perturbation problems is far from trivial because of the boundary layer
behavior of the solution. However, the area of convection-diffusion problems is a field of
increasing interest to applied mathematicians.

The survey paper by Kadalbajoo and Reddy [30], gives an intellectual outline of the singular
perturbation problems and their treatment starting from Prandtl’s paper [51] on fluid
dynamical boundary layers. This survey paper will remain as one of the most readable

source on convection-diffusion or singular perturbation problems.

In this chapter, a numerical integration method is presented for solving general singularly
perturbed two-point boundary value problems. The main advantage of this method is that it
does not require very fine mesh size. The original second-order differential equation is
replaced by an approximate first-order differential equation with a small deviating argument.
Then, the Simpson one-third formula is used to obtain the three term recurrence relationship.

Thomas Algorithm is applied to solve the resulting tri diagonal algebraic system of
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equations. The proposed method is iterative on the deviating argument. The method is to be
repeated for different choices of the deviating argument until the solution profile stabilizes.
To examine the applicability of the proposed method, we have solved several model linear
problems with left-end boundary layer or right —end boundary layer or an internal layer and
presented the numerical results. It is observed that the numerical integration method

approximates the exact solution extremely well.

NUMERICAL INTEGRATION METHOD
For the sake of convenience we call our method the ‘Numerical Integration Method’.
To set the stage for the numerical integration method, we consider the following Governing

linear Convection-diffusion two-point boundary value problem:

syn(x) +a(x) y'(x)+b(x)y(x)=f(x); 0<x<1 (5.1)
Withy (0)=candy (1) =f (5.2)
Where € is a small positive parameter called diffusion parameter which lies in the
interval O<& <1 ; o and P are given constants; a(x) , b(x) and f(x) considered to be
sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that a(x)
> M > 0 throughout the interval [0,1], where M is some positive constant. This assumption
purely implies that the boundary layer will be in the neighborhood of x=0.
Let 6 be a small positive deviating argument (O< 6 < 1). By applying Taylor series

expansions in the neighborhood of the point x, we have
' 52 "
y(x=0)=y(x)=0y (x)+7y (x) (5.3)

and consequently, Eq. (5.1) is replaced by the following first-order differential equation with

a small deviating argument.

2 |

" ' ! 2 '
%y X)=y(x-8)-yx)+dy x)=y (x) =8—2[Y(X-5)')’(X)+5y (x)]So that
G = 2 yx-8)-y00+3y (014 a0y ()+b(x) y) =f(x): 0 x <1

0

= 28 y(x-8)-28y(X) 4268y () +aX)y (X) 82 +bx) y(x) 52 =2 f(x)
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= [262+a(x) 821 (y (X)) +[b(x) 82 - 28 y(x) = 52 f(x) -2 & y(x - 8)

D82 (%) -28 y(x-9) 2&-b(x) §2)

=>yX= 7 y(x-0)+ > Y®)
2ed+a(x) 2ed+a(x) o
: ¢ 26 -b(x) 52 52 f(x)
=Y (0 = (-8 o () (5:4)
2ed0+a(x)d 2ed0+a(x)o 2 g¢d+a(x)o
(5.4) can be re-written as
y'(x) =pX)y(x-0)+qx) yx)+r(x)ford <x <1 (5.5)
Where
-2¢€
p(x) = (5.6)
2£0+0“ a(x)
2
26e—0°Db
g =202 57)
2e6+0° a(x)
2
r(x)= % (5.8)
2€06+0° a(x)
We now divide the interval [0,1] into N equal parts with mesh size h, i.e., h=1/N
and x;=1hfor i=1,2,3....... N. Integrating equation (5.5) in [Xj.1,Xi+1] we get
X.
1+1
Y0, ¥ D= ] P00 Y(x-8)1+q() y(x) + ()] dx (5.9)
X.
1—1

By making use of the Newton-Cotes formula when n=2 i.e. by applying Simpson’s one-

third rule

h
Y(Xi_H) - Y(Xi_l) = g[p(xi-l-l )Y(xi-l-l -9)+4 p(xi) Y(xi -0)+ p(xi-l -9)

+ (pi+1 + pi—l) [Y(Xi+1 —-0)+ Y(Xi_l —0)]+ q(xi-l-l) Y(Xi_H) + q(xi—l) Y(xi-l) + q(xi+1 )Y(Xi_H)
+ 4q(xi )y(xi) + q(xi_1 )y(xi_1 )+ r(Xi+1 )+ 4r(xi )+ r(xi_1 )+ r(xi_i_1 )+ r(xi_l) ] (5.10)

Again by means of Taylor’s series expansion, we have

y(x—8)= y(x)-3y (x)
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and then by approximating y (x) by linear interpolation method we get

O y(x;, ) -y(x;)]

y(x, -0)= y(x;)— ’h
=y(x; )+ y( 11) (xm) (5.11)
Similarly
(=9 = (14D yx,)- 2 yix,) (5.12)
YXig = h Y(Xig hy i .
§=(1-2 0 5.13
Y(Xi_H_ )—(1'H)Y(Xi+1)+HY(Xi) (5.13)

Hence making use of (5.11),(5.12),(5.13) in (5.10), it can be written as

h o o ) ) ) )
Yia Y = E[Pm[(l_ﬂ) Yiu +H yil +4ply; _El Yia +% Yi—1]+pi—l[(l+E) Yia _E yil

o o ) )
+ (P +pi)(1- E Win +—Vi +(+=) vy, —— Vi +240, Vi, 20y, +49y; + 25, +41 +2r1 ]

h h h
2p.8 h 5. h 5. 2h Sp, &  4hp,
[_l_pT' 3 pi(1+ Zh) _(p1+1 +p1—1)(1+_)__q1 Ay +—— Pia _gpm _Tp
4hq. h o 2 5 h 2h
_i] yi tll—==p,(I-—)+ =P (p1+1 Pi- 1)(1__) q1+1] Yiu
3 h 3
2h
=— [r1+l+2r +1,] (5.14)
(5.14) can be written in the standard form as
Ay, +By, +Cy,, =D, (5.15)
2p.® h 0 2h
where A =—1-2P° 15 (142 (p1+1+p1_1)(1+ ) SX® (5.16)
3 3 2h
dp; ) 4hp, 4hq,
B= ‘i _—5 —Ti_ i 5.17
i 3 3 p1+1 3 3 ( )
h 5. 2p h
C= l_gpm(l_ﬁ)"‘—l; _§(p1+1 p;i-( __) q1+1 (5.18)
D, =%[ri+l +2r, +1_,] (5.19)

Here y; =y(Xi ), pi =p(Xi), qi =q(x;) and r; =r(x;). Equation (5.16) gives a system of (N-1)
equations with (N+1) unknown’s yy to yn, The two given boundary conditions (5.2) together

with these (N-1) equations are then sufficient to solve for the unknowns yo to yn. The
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solution of the Tri-diagonal system (5.15) can be obtained by using an efficient algorithm

called ‘Thomas Algorithm. In this algorithm we set a difference relation of the form

Yi =Wy, + T (5.20)

Where W; and T; correspond to W(x ;) and T (x ; ) are to be determined from (5.20) we have

Virr = Win Vit G.21)
Substituting (5.21) in (5.15) we get
C, AT -D,

=1 V. + S S o’ S 522
4 Bi - AiWi—l Yo Bi _AiWi—l ( :
By comparing (5.20) and (5.22) , we can get

-G (5.23)

Bi - Aiwi—l
T =il =Di (5.24)
Bi - AiWi—l

To solve these recurrence relations for i=1,2, 3,....... N-1; we need to know the initial
conditions for Wy and Ty. This can be done by considering (5.2)
Yo =0 =W,y +T, (5.25)

If we choose Wy=0, then To =« . With these initial values , we compute sequentially
Wi and T; for i=1,2,3,....N-1;from (5.24) and (5.25) in the forward process and then obtain y;
in the backward process from (5.20) using (5.2).

Repeat the numerical scheme for different choices of & (deviating argument,
satisfying the conditions (0 < 0 <1), until the solution profiles do not differ significantly
from iteration to iteration. For computational point of view, we use an absolute error

criterion, namely

()" = y(x)" < p,0<x <1 (5.26)
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Where y(x)" the solution for the mth isiterate of 8, and p is the prescribed tolerance bound.

LINEAR PROBLEMS

We considered the applicability of the numerical integration method; we have applied
it to linear singular perturbation problems with left-end boundary layer. These examples
have been chosen because they have been widely discussed in the literature and approximate

solutions are available for comparison.

Example 5.1:
Consider the following homogeneous Singular value perturbation problem from

Kevorkian and Cole [36], p.33, Egs. (2.3.26) and (2.3.27) with a =0:

£y (X)+y (x)=0, 0<x <1with y(0) =0and y(1)=1
The exact solution is given by

_ (1-exp(-x/€))
Y= (1-exp(-1/€))

The computational results are presented in Table 5.1(a) and 5.1(b) for € = 10’3, 10

respectively.



Computational results for ExampleS5.1

(a) e=107, h=0.01.

X y(x) Exact solution
6=0.008 6=0.009 6=0.01
0.00 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
0.02 0.9876486 | 0.9899944 | 0.9917358 | 1.0000000
0.04 0.9998419 | 0.9998944 | 0.9999319 | 1.0000000
0.06 0.9999925 | 0.9999934 | 0.9999995 | 1.0000000
0.08 0.9999945 | 0.9999945 | 1.0000000 | 1.0000000
0.10 0.9999946 | 0.9999948 | 1.0000000 | 1.0000000
0.20 0.9999954 | 0.9999952 | 1.0000000 | 1.0000000
0.40 0.9999964 | 0.9999964 | 1.0000000 | 1.0000000
0.60 0.9999976 | 0.9999976 | 1.0000000 | 1.0000000
0.80 0.9999988 | 0.9999988 | 1.0000000 | 1.0000000
1.00 1.00000000 | 1.00000000 | 1.0000000 | 1.0000000
Table. 5.1(a)
(b) e=10" and h=0.01:
X 6=0.007 6=0.008 6=0.009 Exact soln
0.00 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
0.02 | 0.9998016 | 0.9998477 | 0.9998792 | 1.0000000
0.04 | 0.9999999 | 1.0000000 | 1.0000000 | 1.0000000
0.06 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.08 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.10 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.20 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.40 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.60 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.80 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
1.00 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000

Table.5.1 (b)
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Example 5.2
Consider the following homogeneous Singular perturbation problem from Bender and

Orsag[10] ,p.480. Problem 9.17 with a =O0:

€ y"(x)+ y'(x) -y(x)=0, 0<x<1withy(0)=0and y(1)=1
The exact solution is given by

m

m. X m m
e 2-1e 1" +a-¢ lye

2)(

(x) = where
T my My
(e —-e )
-1++V1+4e -1-V1+4¢
mlz— ; m2 =
2¢€ 2€

Computational results for Example 5.2 are furnished in table 5.2(a) and 5.2(b).

Case-1: €=0.001, h=0.01
X y(x) Exact
solution

- 6=0.008 6=0.009 6=0.01

0.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.02 0.3834784 | 0.3819605 | 0.3808348 | 0.3756784
0.04 0.3834410 | 0.3833556 | 0.3832939 | 0.3832599
0.06 0.3910826 | 0.3910290 | 0.3909866 | 0.3909945
0.08 0.3989720 | 0.3989188 | 0.3988770 | 0.3988851
0.10 0.4070216 | 0.4069688 | 0.4069269 | 0.4069350
0.20 0.4497731 | 0.4497210 | 0.4496799 | 0.4496879
0.40 0.5492185 | 0.5491707 | 0.5491330 | 0.5491404
0.60 0.6706514 | 0.6706123 | 0.6705816 | 0.6705877
0.80 0.8189330 | 0.8189092 | 0.8188905 | 0.8188942
1.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000

Table 5.2 (a)




Case-2: &=10"and h=0.01:

X ™ slution
- 8=0.009 | 5=0.008 | 8=0.007
0.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.02 0.3754246 | 0.3754509 | 0.3754841 | 0.3753479
0.04 0.3829308 | 0.3829373 | 0.3829417 | 0.3829296
0.06 03906657 | 0.3906722 | 0.3906766 | 0.3906645
0.08 0.3985569 | 0.3985633 | 0.3985675 | 0.3985557
0.10 0.4066074 | 0.4066138 | 0.4066185 | 0.4066062
0.20 0.4493662 | 0.4493724 | 0.4493767 | 0.4493649
0.40 0.5488456 | 0.5488514 | 0.5488553 | 0.5488445
0.60 0.6703477 | 0.6703524 | 0.6703555 | 0.6703469
0.80 0.8187476 | 0.8187505 | 0.8187524 | 0.8187471
1.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000

Table.5.2 (b)
Example 5.3.

Consider the following non-homogeneous Singular perturbation problem

87

& y"(x)+ y'(x): 1+2x, 0<x<1
with y(0)=0and y(1)=1
The exact solution is given by

) (1-exp(-x/€))
(1-exp(-1/¢))

yx)=x(x+1-2&)+(2¢e-1

The computational results are presented in Table 5.3(a) and 5.3(b) for e=10°, 10

respectively.



Computational results for Example 5.3

(a) e=10",h=0.01.
X Y(x) Exact solution
- 6=0.008 6=0.009 6=0.01
0.00 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
0.02 | -0.9648339 | -0.9674433 | -0.9693918 | -0.9776401
0.04 | -0.9558469 | -0.9561658 | -0.9564114 | -0.9564800
0.06 | -0.9340471 | -0.9343091 | -0.9345188 | -0.9345200
0.08 | -0.9112990 | -0.9115545 | -0.9117596 | -0.9117600
0.10 | -0.8877492 | -0.8879992 | -0.8881995 | -0.8882000
0.20 | -0.7579996 | -0.7582219 | -0.7583995 | -0.7584000
0.40 | -0.4385004 | -0.4386670 | -0.4387995 | -0.4388000
0.60 | -0.0390007 | -0.0391119 | -0.0391996 | -0.0391999
0.80 | 0.4404994 | 0.4404438 | 0.4404002 | 0.4404000
1.00 | 1.0000000 | 1.00000000 | 1.00000000 | 1.00000000
Table 5.3(a)
(b) &=10"and h=0.01
X 6=0.007 6=0.008 | 6-0.009 Exact Solution
0.00 0.00000000 | 0.00000000 0.00000000 | 0.00000000
0.02 -0.9791212 | -0.9792020 -0.9792610 | -0.9794040
0.04 -0.6581250 | -0.9581596 -0.9581869 | -0.9582080
0.06 -0.9361311 | -0.9361844 -0.9361909 | -0.9362120
0.08 -0.9133368 | -0.9133694 -0.9133958 | -0.9134160
0.10 -0.8897421 | -0.8897744 -0.8897998 | -0.8898200
0.20 -0.7597710 | -0.7597994 -0.7598217 | -0.7598400
0.40 -0.4398281 | -0.4398495 -0.4398661 | -0.4398800
0.60 -0.0398852 | -0.0398996 -0.0399109 | -0.0399199
0.80 0.4400573 0.4400503 0.4400447 0.4400400
1.00 1.00000000 | 1.00000000 1.00000000 | 1.00000000

Table.5.3 (b)

88
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RIGHT END BOUNDARY LAYER PROBLEMS
We now describe the numerical integration method for solving problems with the
boundary layer at the right-end of the underlying interval. To be specific we consider the

following singular perturbation problem.

£y (X)+a(x)y (x)+bx)y(x)=f(x) ; 0<x <1 (5.27)
with y(0) =aand y(1) = B (5.28)

Where ¢ is a small positive parameter (0<&£<<1); «, [ are given constants; a(x),
b(x) and f(x) are assumed to be sufficiently continuously differentiable functions in [0, 1].

Here we are assumed that a(x) < M < 0 throughout the interval [0,1] where M is
some negative constant. This assumption merely implies that the boundary layer will be in
the neighborhood of x=1.
The evaluation of the right-end boundary layer for (5.27) and (5.28) is similar to that of the
left-end boundary layer but there are some differences worth noting. By using Taylor series
expansion in the neighborhood of the point x, we have consequently, Eq. (5.27) is replaced

by the following first-order differential equation with a small deviating argument.

26 y(x+8)—28 y(X)-2& 8 y (X)+82 a(x)y (X582 b(x)y(x)=52 f(x) (5.29)

Transition from Equation (5.27) to (5.29) is exists, because of the condition that 8 is small
Viz., (0< d<<1).

We rewrite equation (5.29) in the following convenient form:

y (X)=p(x) y(x+08)+q(x)y(x)+1(x)for 0<x<1-6 (5.30)

Where
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p(x)=2¢ (5.31)
0 a(x)-2¢d
2¢ - 52 b(x)
g = (5.32)
0% a(x)-2¢€d
2
r(x):i (5.33)
52 a(x)-2¢6

We now divide the interval [0, 1] into N equal parts with mesh size h, i.e., h=1/N and
xj=ihfori=1,2,3....... N. Integrating equation (5.30) in [Xi—l Xi+l] we get
yx. -y O)=[Xi+1 [pX) y(x -8) + q(x)y(x) +r(x) ] dx (5.34)
i+1 i-1 X0
By making use of the Newton-Cotes formula when n=2 i.e. applying Simpson’s one-

third rule approximately, we obtain

h
Y(XH_I)'Y(XI_I)ZE[P(X1+1)Y(X1+1+8)+4P(X1)Y(Xl +8)+P(X1_1)Y(X1_1'6)+Q(X1+1)Y(X1+1)

£ YO HAGEO)YR)FI0G | )+ +T(x )

(5.35)
By means of Taylor’s series expansion we have
YO, +8)=y(x) +8y (x.)
and then by approximating y'(x) by interpolation formula, we get
yx. )=y S S
_ i+1 1’719 o
0 +8) = y0x) + 81— = (1D v+ v ) (5.36)

and similarly we have
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Y+ =02y y(x) (5.37)

y(x; +8) =(1+— )y(X y(Xi) (5.38)

1+1)

Apply (5.36), (5.37) and (5.38) in. (5.35) we have

J+4p [(1——)Y |

h
y("iJrl)_Y(X'—1)‘§[Pi+1[( )Y1+1 hYi i Tp it

o
TP 1[(_ )yll hy] %G1Yi+1 1Y

+4qiyi +2ri +4r. +r1 (5.39)

+1 1 i—l]

Now rearranging equation (5.39) in the three point form. i.e. three term recurrence

relation

A. LY 1+B Y; +C. Vi = Di (5.40)
h 6. h
d 4hp. 8. dp., 4hq,
B=-[-p +—(1——)-—t 4 —Hi 5.42
1[3P1713(h)3 3] (5.42)
0, 4pd6 h

C=1 1+—)——Xi~"_—q. 5.43
i 3 1+l( h) 3 3q1+1 ( )

h
D, = 3 [r,, +4r +1.,] (5.44)

And yi=y(x;) , pi=p(Xi), qi=q(x;) and ri=r(x;)

Now we can solve (5.40) the system of equations of order (N-1) in terms of (N-1)
unknowns yi , ¥2 5, Y3 eeeeennnnn y ~-1 by means of famous efficient Thomas algorithm.
Repeat the numerical scheme for different choices of & the deviating argument,

satisfying the condition 0 < d<<1 , until the solution profiles do not differ materially

from iteration to iteration.
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Example 5.4:
To demonstrate the applicability of the numerical integration method, we will discuss

one singular perturbation problem with right-end boundary layer.

£y (x)—y (x)=0; 0<x<l1

with y(0)=1 and y(1)=0

In this example we have a(x) =-1, b(x) = 0 and f(x) =0. Further we have a boundary layer

of width O(¢ ) at x =1

t-exp* )
The exact solution is given by  y(x)= & ;
1—exp(—)
€
The computational results are presented in Table 5.4(a) and 5.4(b), for ¢ = 10* 10

respectively.

Computational results for Example5.4:

£ ==10"and h=0.01

X 0=0.008 | 6=0.009 | §=0.01 Exact solution
0.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.20 0.9999989 | 0.9999997 | 1.0000000 | 1.0000000
0.40 0.9999975 | 0.9999997 | 1.0000000 | 1.0000000
0.60 0.9999962 | 0.9999997 | 1.0000000 | 1.0000000
0.80 0.9999948 | 0.9999997 | 1.0000000 | 1.0000000
0.90 0.9999942 | 0.9999997 | 1.0000000 | 1.0000000
0.92 0.9999940 | 0.9999997 | 1.0000000 | 1.0000000
0.94 0.9999920 | 0.9999987 | 0.9999995 | 1.0000000
0.96 0.9998413 | 0.9998997 | 0.9999316 | 1.0000000
0.98 0.9876480 | 0.9899997 | 0.9917356 | 1.0000000
1.00 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000

Table.5. 4(a)




£ =107 and h=0.01
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X 0=0.007 | 6=0.008 | 6=0.009 | Exact solution
0.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.20 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.40 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.60 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.80 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.90 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.92 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.94 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.96 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.98 0.9998017 | 0.9998475 | 0.9998476 | 1.0000000
1.00 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000
Table. 5.4(b)
CONCLUSIONS

As mentioned the numerical integration method is iterative on the deviating argument
0. The process is to be repeated for different choices of & (deviating argument), until the
solution profiles do not differ materially from iteration to iteration. The choice of & is not
unique but can assume any number of values satisfying the condition, 0 < 8 << 1. To reduce
the amount of computational time, we fix the mesh size h and vary the deviating argument 9.
Finally, we pick up the smallest value of & which produces the required accuracy. We have
implemented this method on various problems with a left-end boundary layer and right-end
boundary layer by taking different values for €. The computational results are presented in
Tables 5.1(a) - 5.4(b). We have given here only a few values although the solutions are
computed at all the points with mesh size h. It can be observed from the tables that the
present method approximates the exact solution very well. This shows the efficiency and
accuracy of the present method.

We have observed that the numerical integration method is capable of solving general
convection-diffusion type of singularly perturbed two-point boundary value problems. This
method provides an alternative and supplementary technique to the conventional ways of
solving singular perturbation problems. It is a practical method, easily adaptable on a
computer to solve singular perturbation problems with a modest amount of problem

preparation.



PART-III

94



95

CHAPTER-6

ARTIFICIAL DIFFUSION - CONVECTION PROBLEM IN ONE DIMENSION

INTRODUCTION

This chapter deals with a convection-diffusion problem in one-dimension with
variable coefficient wherein an artificial — diffusion term is present. As a closed form
solution, in general, is not possible the classical Frobenious method of series solution was
used to solve the governing differential equation. Further the problem is also solved by
making use of a central difference scheme. The Frobenious series solution is numerically
computed and the results are compared with those obtained by central difference scheme.
The results are depicted through graphs and the results obtained by both the methods seem to
be in good agreement. It is observed that the artificial diffusion term plays a significant role
in the behaviour of the solution.

Martin Stynes in his exemplary contribution [66] has presented an excellent survey of
steady-state convection-diffusion problems. Quoting  Morton [40], Stynes observes that
while the most common source of convection-diffusion problem is through linearization of
Navier-Stokes equations with large Reynolds number, there are at least ten diverse situations
where such equation occurs.

In the present chapter we considered a convection-diffusion equation with a slight
modification made in the diffusion coefficient, such diffusion coefficient is apparently
increased with small quantity to analyze the nature of solution in the boundary layer region.
The reason behind this, in chapter-2 the steady-state convection-diffusion problem in one
dimension has a numerical solution which has oscillatory nature in the boundary layer region.
In the present chapter we proposed to study a convection-diffusion problem with variable
coefficients wherein the diffusion coefficient in chapter-2 is apparently increased by adding
an artificial diffusion term to the diffusion coefficient which is merely a numerical quantity.

The revised differential equation is solved first by the classical series solution method
of Frobenious. Subsequently the differential equation is also solved numerically making use
of a central difference scheme. The solution is obtained by Frobenious method is

numerically computed for a given diffusion parameter and is compared with the numerical
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solution. The results are seem to be in good agreement. The artificial diffusion term
introduced seems to have influenced the boundary layer thickness and in the present case the

boundary layer thickness is reduced in comparison with that obtained in chapter-2.

ANALYTICAL SOLUTION

In the case of Convection — Diffusion problem

2
_4%u du_

> d— =1 With the boundary conditions u(0) =u(1) =0 (6.1)
dx X

Analytical solution of (6.1) is
e—(l—x)/s_e—l/a
u(x)=x— for 0 <x <1
e~V ©.2)

the associated graphs of the solution (6.2) and the computed solution of (6.1) by using

central diff~rence scheme are shown here.

Figure.6.1
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Now we shall consider the two—point boundary value artificial diffusion — convection

problem in one-dimension given by

2
(X dTu Ao Withu(0)=0. u(l)=0 6.3)
2 dx2 dx
1
Let p(x)=— )I(1x , q(x)= - T , T(X)= - and (6.3) be brought to the
(8+3 ) (s—i»2 ) (e+—

standard form:

d*u
dx?

+p(x) 3—2 +q(x) u=r(x) withu(0)=0, u(1)=0 (6.4)

The differential equation (6.4) is linear with variable coefficients. Closed form solution
for this equation seems to be out of reach. Hence we propose to solve it by applying
series solution method due to Frobenius.
x =0 is an ordinary point of (6.4) , its every solution can be expressed as a series of the
= k
form u= > ak X (6.5)
k=0

Writing (6.5) and the expressions of

oo 2
du_ > akkxk'1 , d7u_

dx y—o dx2 K

2

K (k-1)xX~ (6.6)

I ™38

a
Ok

in (6.3) we have

k
a, x =1
k Ok

e+ Xy 5 akk(k—l)xk_2 +x Y a kx4 v
2 k=2 k=1 K =

The expressions for An,83,8,,85.0ee in terms of ag,a are given by
2 .2
1 h—ha0+4s a 68(3.0—1)—(h —h"a,—4ahe)

a -
_% 0
27 2T 48 &3

_88(h-hao+4318)-3h(6830-68—h2+h230-4alh8)
480 &%

as Etc.,
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On comparison of coefficients of lowest degree terms of x to zero, to determine the
coefficients in terms of ag, a | numerically, the recurrence relation may be obtained as

1

a = —ha 1, n=2,3,4.... (6.7)
n+2 g(n+2) n+1

la - 5
These coefficients are related in terms of agand a;

On substitution of all the values in equation (6.4) and the boundary conditions u(0) =0,

u (1) =0 the series solution may be obtained for h=0.01, & = 0.05 as

u =1.626954733x -10 x> +11.17969822 x* -50.55848491 x* +47.75233197 x’+....  (6.8)

The approximated graph of (6.8) which is the solution of (6.3) is given below

Figure 6.2

which satisfies the condition of convergence in the interval 0 < x < 1 by virtue of
D’alembert’s ratio test. The condition of convergence can be established by introducing

partial sums.

FINITE DIFFERENCE METHOD

Consider the artificial diffusion — convection equation

2
hx . d d :
%)711+x—u+u=1 with u(0)=0,u(1)=0 (6.9)

“ )2 P

Apply central difference scheme to the above differential equation where
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u. ,-2u. +u.
i—1 1 i+l (610)

—_itl il g wx) =
7h (x) h2

where u; = u(x;). , Xx=ih on substitution of (6.10) in (6.9) we get

2w, -2u. +u. u. ,-u.
_(8+1I; ) i—1 21 i+l 1+12h i-1 u, -1 6.11)
h
The final transformed difference scheme is
a;u. +bi u,+cu :di (6.12)

Where a,=-&.b, =2e+h% (1+i).c, =-(e+ih?).d, =h?

The boundary conditions u(0) =u(1) =0 are represented by up=0,ux =0

Equation (6.12) represents a Tri-diagonal Matrix of the form

—

Au=D (6.13)
where the coefficient matrix A is of order n-1 The Non-homogeneous linear system
(6.13) is solved by applying Thomas algorithm. Here the Coefficient matrix is a
Monotonic matrix. This concept incorporated reduces the variations in the computed

solution. The computed result with corresponding graph is shown below.

0.8 -
0.7 -
0.6
0.5 -
0.4 -
0.3 -
0.2 A

0.1

Figure.6.3



Numerical solution of artificial diffusion — convection equation
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X u X u X u X u

0 0 0.26 0.5157 | 0.51 0.6919 |0.76 0.7591
0.01 0.0345 | 0.27 0.5261 0.52 0.6964 | 0.77 0.7585
0.02 0.0672 | 0.28 0.5361 0.53 0.7008 | 0.78 0.7574
0.03 0.0982 | 0.29 0.5457 | 0.54 0.705 0.79 0.7556
0.04 0.1275 | 0.3 0.555 0.55 0.7091 0.8 0.753
0.05 0.1553 | 0.31 0.564 0.56 0.7131 0.81 0.7495
0.06 0.1817 | 0.32 0.5726 | 0.57 0.7169 | 0.82 0.745
0.07 0.2068 | 0.33 0.5809 | 0.58 0.7206 | 0.83 0.7392
0.08 0.2307 | 0.34 0.589 0.59 0.7242 | 0.84 0.7319
0.09 0.2534 | 0.35 0.5968 | 0.6 0.7276 | 0.85 0.7229
0.1 0.275 0.36 0.6043 | 0.61 0.731 0.86 0.7118
0.11 0.2956 | 0.37 0.6115 |0.62 0.7341 0.87 0.6982
0.12 0.3152 | 0.38 0.6185 |0.63 0.7342 | 0.88 0.6816
0.13 0.3339 | 0.39 0.6253 | 0.64 0.7401 0.89 0.6615
0.14 0.3518 |04 0.6319 | 0.65 0.7428 | 0.9 0.6371
0.15 0.3689 | 0.41 0.6383 | 0.66 0.7454 | 091 0.6076
0.16 0.3853 | 0.42 0.6444 | 0.67 0.7479 1 0.92 0.5719
0.17 0.4009 | 043 0.6504 | 0.68 0.7501 0.93 0.5288
0.18 0.4159 |0.44 0.6562 | 0.69 0.7522 | 0.94 0.4768
0.19 0.4302 | 0.45 0.6618 | 0.7 0.754 0.95 0.4139
0.2 0.444 0.46 0.6672 | 0.71 0.7556 | 0.96 0.338
0.21 0.4572 | 0.47 0.6724 | 0.72 0.757 0.97 0.2461
0.22 0.4698 | 0.48 0.6775 |0.73 0.758 0.98 0.1348
0.23 0.482 0.49 0.6825 | 0.74 0.7588 | 0.99 0.0001
0.24 0.4937 | 0.5 0.6873 | 0.75 0.7591 1 0

0.25 0.5049

Table 6.1
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CONCLUSIONS

It has been observed that the graphs shown in Fig(6.1) , Fig(6.2) , Fig(6.3)
maintain character preserving phenomena over (0,1). Especially in the interval of smooth
region steep down fall of the graph coinciding with the actual solution is significant thing of
considerable order. For small € the equation is dominated by the convection term. The
boundary or interior layers may appear along downstream of the convection direction i.e.,
after the smooth region the diffusion effect is visible in the interval (3, 1). The amount
ha(x)/2 by which the diffusion coefficient was apparently increased is called the artificial
diffusion. Stable solution is observed under the influence of the artificial-diffusion. The
exact solution is non-zero almost everywhere except at the boundary points and approaches
to zero in a narrow boundary layer sub-interval very close to the point x=1. The numerically
computed values of u also support this statement vide Table-6.1. The computed solution and
the series solution exhibit good agreement on the convection-diffusion phenomena almost
throughout the region. When diffusion is more (Artificial diffusion), then the computed

layers are smeared.
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CHAPTER-7

NUMERICAL STUDY OF CONVECTION -DIFFUSION PROBLEM IN TWO-
DIMENSIONAL SPACE

INTRODUCTION

The convection-diffusion problem in two-dimensional space is solved on a unit
square mesh with the prescribed boundary conditions by finite difference method where in
central difference scheme is employed. In the process finite difference scheme of Standard
five point formula was employed. Initial approximations to temperature distribution function
were given on the basis suitable to physical nature of the problem by intuition. =~ The results
thus obtained are plotted through graphs and the physical nature of the problem is discussed.
It is observed that there is a boundary layer at the specific values of arguments.

Consider the elliptic operator whose second order derivatives are multiplied by a
parameter € that is close to zero. These derivatives model diffusion while first-order
derivatives are associated with the convective or transport process. In classical problems ¢ is
not close to zero. Here the two-dimensional convection-diffusion problem is studied.
Diffusion term play an important role at the boundary layer near the arguments x=1, y=1
which makes rapid changes in the solution at the boundary layer. In the two-dimensional
convection- diffusion problem the differential equation got converted to difference equation.
The corresponding finite difference scheme is solved by using standard five point formula
with the initial guess values. Here we have selected the relation between mesh size (h) and
the perturbation parameter (€) in such a way that the numerical solution gives a stable
solution. To summarize, when a standard numerical method is applied to a convection-
diffusion problem, when there is too little diffusion then the computed solution is often
oscillatory, while if there is superfluous diffusion term, the computed layers are smeared.

We can see that the solution of this problem has a convective nature on most of the
domain of the problem, and the diffusive part of the differential operator is influential only in
the certain narrow sub-domain. In this region the gradient of the solution is large. This

nature is evidenced by steep down fall of solution near the boundary.
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In the linear convection-diffusion problem with variable coefficient, transport
mechanism dominates where as diffusion effects are confined to a reasonably small part of
the domain. The coefficient of diffusion causes the oscillations at the boundary layer. The
solution pattern shows that at the boundary layer diffusion term play significant role.  For

low Peclet number we may get the stable solution.

ANALYTICAL SOLUTION
In this chapter, the diffusion coefficient € is a small positive parameter and coefficient

of convection a(x, y) is continuously differentiable function that is Holder continuous on

Q) the closure of Q2.
In two dimensions, the governing convection-diffusion equation is

—& AU(X, Y) + a(X’ Y) Vu (X’ Y) + b(X, Y) U(X, Y) = f(X, Y)

on Q CR2 with u(x,y) = g(x,y) on 0Q (7.1)

-

where 0 < € <<1, and the functions a, b and f are assumed to be Holder continuous on (), the

closure of Q. Here we also assume that b >0 on Q. Here Q is any bounded domain in
R? with a piecewise Lipchitz—continuous boundary dQ . Let us suppose that g is continuous
except perhaps for a jump discontinuity at a single point.

The differential operator L is elliptic so (7.1) possess a solution in the region defined. Here L
also satisfies the Maximum principle which is discussed in [59]. Assume that the absolute
value of ‘a’ is close to 1 so that convection dominates diffusion. In the problem that we
consider, the solution u(x,y) of (7.1) has an asymptotic structure similar to that of one-
dimensional problem which was discussed in chapter-2. We can write u as the sum of the

solutions to a first-order partial differential equation, u at layer(s) with order O(€) term.
To make this more precise, we divide the boundary 0Q into 3 parts

Inflow boundary 7 Q ={xedQ:an <0},
Outflow boundary 0"Q={x€ Q:an > 0}

Tangential flow boundary °Q={x€ 0Q:an = 0}, ....... (7.2)
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Where n is the outward-pointing unit normal to 0Q.

Figure.7.1  (Partition of 89)

A typical solution u will have boundary layers—narrow regions close to d Q where

|Vu| is large along 0 " Q and 9YQ. As in one-dimensional problems exceptional Dirichlet
boundary conditions on g can eliminate these layers. On most of Q , u is approximately
equal to up(x,y). Then the solution of the reduced problem

a(x,y) Vu, (x,y) +b(x,y) u(x,y) =f(x,y) onQ, up=gon 9 Q (7.3)
This first-order partial differential equation (7.3) has characteristic curves which are the

parameterized curves (X (t), y(t)) in € defined by
x () =a,06y),y' (0 =2,(x,y) (7.4)
with initial data (x (0), y (0)) = (x’ ,y’ ) where (x’ ,y’ ) is any point in @ . Thus one such

curve radiates into Q from each pointind Q.
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Exponential Boundary Layers
Consider the boundary value Problem (7.1)

—eAu+b(x,y) Vu+cx,y)u=1f(x,y)in Q= (0, 1) x (0, 1),
u = 0 on the boundary I

Assume that the data are smooth and that ¢ > 0 with b = (by, b;) where b; > 0 and b, > 0.

Then the sub characteristics behave as in Figure.7. 2 and the reduced problem
is defined as

b.Vu,+cu, =f,u ‘ =u ‘ =0 7.5
0 0 >0lx=0 0 y:() (7.5)
4 4 4 A
,.-'f" - ",Jfl F__ .
- 7
A
[ |
/Jfr I
| | |
A '
- |
| P |
[ /’/ y o II Ty
//l o y d | o
- ” |
[ yd s hy
- A
| / P P
[ A~ '
/;f, /f/ /’, .
¥ s - -

Figure.7.2 Sub Characteristics through a Corner

We expect exponential boundary layers at x = 1 and at y = 1. The asymptotic approximation

with transformation 5 =(1-x)/eand 7]= (1-y)/e takes the form:

1- )
Uasy (X, y) = ug(x,y) - ug(1, y) exp {— b (1, Y)Tx} ~u, (x,]) exp[— by(x.]) 1;} (7.6)

equation (7.6) is inaccurate near the corner point (1,1) because the boundary layer terms

82w a2w
_(_+

overlap there. Consequently we add a corner layer correction which is the solution of
—) b, (LD
g2 an?

ow w
- . 1’1 —=0 O]’] O’oo X O,oo

(7.7)
With the use of the transformations f =(1-x)/eand 7]= (1-y)/e
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We obtain

UAsy(X,Y) = llAsy>:< (X,y) + uo(l,l) exp |:—b1(1,1) (I- X):‘ CXp|:-b2(171)1_y:l
€

€
if U,eC (Q)mC(ﬁ), the classical comparison principle gives
lu—u 4 ll< Ce (7.8)

Here C is generic constant which is independent of €. Layers along 0+ are called regular

or exponential boundary layers. Writing 77 =(n; , np ) for the unit outward-pointing normal
to the 8 Q , then near 8 *Q , exponential layers are essentially multiples of the function
Exp[-(a.n) d(x,y), 0*Q/¢e ], where d(x,y), denote the distance from the point (x,y) to the

out-flow boundary 0 * €. Thus in cross-section perpendicular to 0" these layers are very

much similar to the boundary layers that in one -dimension. Their first order derivatives in

the direction perpendicular to the boundary have magnitude 0(1), and the width of the
£
layeris O (elIn(1/g)).

FINITE DIFFERENCE METHOD:

Consider the two-dimensional convection-diffusion problem

—eAu(x,y)+ g_u =1  Equivalently
X

2 2
gla u 9 “} LR defined in the region Q= (0,1) X (0,1)

ax2 ay2 ox
u(x,y) =0 on the boundary 0 Q (7.9)
ie,u0,00=0,u,0)=0,u0j)=0,u(l,1)=0 ij=123......... n

As a closed form solution, in general, is not possible so we solve the problem by using
Discretization method.

Discretize the above differential equation (7.9) by using central difference approximations

2 2
97u ! 2u. . +u. 97u ! 2u. . +u.

o2 p2 i 1—1,j]’ay_2:k_2[“i,j+1‘ ij Y] (7.10)
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du _ it,j " el j

— 7.11
ox 2h ( )

and

Apply equation (7.10), (7.11) in (7.9) to get a difference equation of the form with h = k on
the square Region.

u

- u. P
> 2u. .4+u. ;. +u. 2U. . +u. n i+,j il -1

h_Z[ui+l,j_ I e T U e W 2 B T R W | oh

The final transformed difference scheme is

_L

2
ui,j—SE[Zh -(-28+h)ui+1’j+(2£+h)ui_1 . +2eu. . +2eu. } (7.12)

,] i,j+1 i,j-1

Select € =0.05 , h =0.01 so that we can expect a stable solution. Apply the standard five
point formula on (7.12) by selecting the initial approximations we can get values of u at each
nodal point. The associated graph is as plotted below in figure. 7.3

The values of u have been computed for the ranges of x =0 to x =1 and y=0 to
y=1with spacing h=k=0.01. There are as many as 99x99 entries in the tabulated output. Here
we are furnishing values of u corresponding to: x=0 to x=0.1 with step size 0.01, then for
x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 with step size 0.1. Finally values of u for x=0.9 to x=1
are presented in Table.7.1 with step size 0.01.
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Xy 01]0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0 01]0 0 0 0 0 0 0 0 0 0
0.01 | 0| 0.08516 | 0.15355 | 0.20461 | 0.24031 | 0.26388 0.2612 0.2617 | 0.2644 | 0.2766 | 0.281
0.02 | 0| 0.15252 | 0.27489 | 0.29882 | 0.4282 | 0.469045 | 0.27869 | 0.28759 | 0.29274 | 0.29561 | 0.29717
0.03 | 0]0.19734 | 0.35617 | 0.29882 | 0.55394 | 0.60592 0.49433 0.50929 | 0.51781 | 0.5225 | 0.525
0.04 | 0| 0.22099 | 0.39993 | 0.29882 | 0.62246 | 0.68051 0.63776 | 0.6564 | 0.6669 | 0.67259 | 0.6756
0.05 | 0| 0.23024 | 0.41771 | 0.55635 | 0.65112 | 0.71183 0.71583 0.73637 | 0.74784 | 0.75404 | 0.75431
0.06 | 0| 0.23269 | 0.42273 | 0.56482 | 0.65963 | 0.72121 0.74865 0.76998 | 0.78186 | 0.78825 | 0.80403
0.07 | 0 | 0.23306 | 0.42358 | 0.56482 | 0.66121 | 0.72297 0.75851 0.78009 | 0.79209 | 0.79854 | 0.80403
0.08 | 0 | 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76038 | 0.78201 | 0.79403 | 0.80049 | 0.80403
0.09 | 0 | 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.1 0] 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.2 |01 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.3 |01 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
04 | 0] 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.5 |01 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.6 | 0]0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.7 |01 0.23309 | 0.42365 | 0.56482 | 0.66135 | 0.72312 0.76054 | 0.78218 | 0.7942 | 0.80066 | 0.80403
0.8 | 0] 0.23309 | 0.42365 | 0.56482 | 0.66134 | 0.72312 0.76053 0.78215 | 0.7942 | 0.80066 | 0.80061
09 |0]0.23293 | 042386 | 0.56211 | 0.65395 | 0.71856 0.74116 | 0.66777 | 0.79405 | 0.80056 | 0.7012
091 | 0| 0.23274 | 0.42196 | 0.5593 | 0.64698 | 0.71414 0.72493 0.59541 | 0.79402 | 0.79984 | 0.701
092 | 0] 0.23234 | 0.42014 | 0.5539 | 0.63427 | 0.70592 0.69724 | 0.55345 | 0.794 0.79899 | 0.7
093 | 0] 0.2315 | 0.41656 | 0.54389 | 0.61204 | 0.69115 0.6521 0.50432 | 0.79399 | 0.79734 | 0.6989
094 | 0| 0.22981 | 0.40978 | 0.52605 | 0.57492 | 0.66568 0.58233 0.5 0.78802 | 0.77796 | 0.68989
095 | 0| 0.22652 | 0.39743 | 0.49574 | 0.51627 | 0.62374 0.48118 | 0.48997 | 0.78238 | 0.75976 | 0.6885
0.96 | 0 | 0.23038 | 0.376 0.49574 | 0.42941 | 0.5583 0.44878 | 0.48112 | 0.67 0.72924 | 0.68232
0.97 | 0| 0.20944 | 0.34084 | 0.43377 | 0.31047 | 0.46257 0.3052 0.46128 | 0.6022 | 0.68025 | 0.60723
098 | 0| 0.19102 | 0.28684 | 0.27189 | 0.16263 | 0.33297 0.3 0.42134 | 0.49614 | 0.49614 | 0.49978
099 | 0] 0.11989 | 0.11186 | 0.14338 | 0.16163 | 0.17356 0.1794 0.18236 | 0.1838 | 0.18446 | 0.18477
1 01]0 0 0 0 0 0 0 0 0 0

Table. 7.1
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Figure. 7.4
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CONCLUSIONS

The inflow boundary 0" Q is the side x = 0 of ?2; the tangential flow boundary

comprises of the sides y = 0 and y = 1; the outflow boundary is the remaining side x = 1.
From (7.4) each sub characteristic is parameterized by x'(t) =1, yl(t) =0 so that we can get

x =t as admissible solution and the sub characteristics are the lines y = k (arbitrary).

On most of Q from Figure.7.3, Figure.7.4 it is evidenced that u(x, y) = x in the region.

The side x = 1 of € is the outflow boundary 6°Q and an exponential layer appears there.
The tangential flow boundaries y = 0 and y = 1 have characteristic boundary layers that grow
in strength as x moves from 0 to 1 because of the increasing discrepancy between uy and the
boundary conditions. On most of the region convection process dominates where as diffusion
process is visible only at the neighborhood of the corner point (1,1). For low Peclet number
convection process dominates in the region identified. When values of x are in the range
0.08-0.81 values of u are found to be constant for any choice of values of y, means there is no
effect of diffusion. Infact naturally u lies in the smooth region, as mentioned above prior to
the boundary layer region. For high Peclet number solutions are essentially of pure
convection flows. The solution possesses an interior layer starting at (0, 0.8). On the

boundary x=1 and on the right part of the boundary y=0 exponential layers are developed.
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112

CHAPTER-8

NUMERICAL STUDY OF WAVE PROPAGATION IN A NON-LINEAR MEDIUM
DUE TO IMPACT

INTRODUCTION

Two bodies which have distinct velocities in the same direction come into contact, an
impact occurs. Within the impact analysis i.e., in the displacement of the bodies after impact,
the impact force is a function of time‘t’ which is acting like a compression force. The impact
time is very short and the stresses generated are high. We studied non-linear material
behaviour in the one-dimensional case after impact. The wave propagation is studied by
means of material nature. Here we considered two bodies with same material property with
some non-linearity. Nonlinearity is studied after impact. The objective of this chapter is to
present a numerical study of propagating pulsed and harmonic waves in nonlinear media
using a Finite difference scheme. This study focuses on longitudinal, one-dimensional wave
propagation. In the finite difference scheme Non-linear system is reduced to a linear system

by quasi-linearization method. The numerically obtained results reveal the material nature.

FORMULATION OF THE PROBLEM
A bar -1 of length L; impacts another bar- 2 of length * L,.  Both bars have the same
material properties and non-linear nature. The left bar has an initial velocity of V,, whereas

the right bar is at rest.
V1=V, V,=0

Figure. 8.1
(LONGITUDINAL IMPACT OF TWO BARS)
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Herec (u) >0, Rn<0 & Rnc(u)=0 (8.1)

Here Reaction force (Ry) Normal gap c(u) are perpendicular to one another.
Furthermore one has to fulfill the initial and boundary conditions of the problem stated in
the above figure and the standard contact conditions (8.1) which describe that no penetration
can occur at the contact point and also that the contact force is a compression force. In this
problem our interest is to study when two objects are selected in the figure (8.1) which are
not linear in nature.

For materials under plastic deformation, Materials with distributed damage, linear
elastic Hooke’s law is usually inadequate to describe their nonlinear, inelastic behavior.
Various constitutive laws have been proposed. Here we study the class of materials whose

behavior can be described by the following stress-strain relationship.

do(e,g) _

oe

£
g(ﬁ)—aS[G(go )—f(so)]eas[go_‘g]—as | [g(T)_i(T)]eas(r—e) dt (8.2)
e dr
0
Where €, is the initial strain s=sign ( e'), o is a constant, and f (¢) and g (€ ) are functions to

be determined experimentally for a given material.

A special case of (8.2) namely with no initial stress and strain is considered as

1 €
M = g(s) +asf(0) e~ OSE_ g I{g{T}M}eas[r -€] 4z (8. 2(a))
oe 0 dr
set =0,
gl e)=E(l -ye -8¢?) (8.3)

One can reduce the stress-strain relationship of (8.2(a)) to the well-known nonlinear elastic

constitutive law,

o (£,¢)

=E(l - y&-8 g2-....) (8.4)
oe

Where E is the second order Elastic (Young’s) modulus. E y is called the third order elastic

constant, Equation (8.4) was derived by Landau and Lifshitz (1959) by expanding the strain
energy density function for hyper-elastic materials.
Equations (8.4) do not show any hysteresis in the stress-strain relationship. The hysteretic

behavior is accounted for by using a nonzero . Means, call ¢ the hysteresis parameter.
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Using the equation of motion by Achenbach [2]

1_80 _ 92
p dx at2

(8.5)

Where u(x, t) is the displacement in the x-direction, p is the mass density, and o (x,t) is

the normal stress in the x-direction. For the small strain deformation considered here, the

normal strain in the x-direction is

_ du
€ = Ix (8. 5(a))

By using formula (8.5(a)) with c= /i and oc=0(¢ g') in (8.5) we have
p b

2 2 2
I _9%u _92u _ 106 5 9% (8.6)
c? at?2 o9x? E deg ax 2

Where E is the elastic Young’s modulus and ‘c’ can be considered as the phase
velocity. This nonlinear equation is solved by applying finite difference method. In the
middle of the process iteration across the time —step concept is introduced to overcome the
Non-linearity of equations.

From equation (8.4) in the case of a nonlinear material considered by the first two

terms only so that we get

w%i’g)zE(l - 9E) (8.7)
6=E (s-%y&) 8.8)

Clearly, when ¥ = 0 , the material is linear elastic. The parameter 7 indicates the
amount of material nonlinearity. The parameter ¥ defined here is identical to the acoustic
nonlinear parameter. The acoustic nonlinear parameter arises in metals due to lattice
anharmonicity which is usually very small in comparison to the elastic deformation of the
metals. So we can study wave propagation nature for various acceptable values of Y. Here
we are considered the values ¥ =10000, ¥=5000 and y =2500 respectively. From (8.8)
we observe that the material behaves differently in tension and Compression, although the

difference is only to the second order. In the literature, such material behavior is sometimes
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referred to as pseudo elastic. To model materials with identical nonlinear tensile and
compressive behavior only the quadratic terms in  (8.4) should be used.
Apply (8.8) in (8.6) to get
2 u 2 0 2 u
u
8 -y (8.9)
ox
ot ox

Equation (8.9) is the non-linear wave - equation developed by Gol’dberg (1961)

NUMERICAL SOLUTION OF WAVE EQUATION
We apply Finite difference scheme to  equation (8.9) with (8.10), (8.11) (given

below) so that it becomes a difference equation where is a varying strain value, occurs

X

in the non-linear equation (8.9). Such an equation is reduced to a linear equation by applying

quasi- linearization technique. Normally the value of would be assigned its value at

X
the beginning of the time-step; the computations might be repeated at various time levels.
This procedure of reevaluating coefficients is called Quasi-linearization method.

(8.9) can be re-written as

o’u 9’u  Jdud’u

Y s 8.10
o ox’ oxox’ (810
o’u d’u odud’u
— ——+Y=—=— =0 8.11
o’ ox° Yax ox’ (8.11)

(8.9) is of the form: f(u_,u_,u,)=0 (8.12)
Apply the quasi-linearization method on the governing equation (8.9) we have

n+l n, of n+l n, of
f(uX ’uXX’ utt) (n)+(ux _uX )E (n)+(uXX _uXX )E (n)
(n+1) (n),_of _
+(tht — Uy )y (n)—O (8.13)
tt
(8.13) can be transformed to u(x, t) notation so that
+1 n+l n

(U 'uxx+Yuxuxx)(n) +(ux _ug)(Yuxx)(n) +[(uxx( )_uxx( ))(Yux)](n)
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+(utt(n+l)_utt(n)) () —0 (8.14)

Finally equation (8.14) after simplification can be written as

utt(n+l)+7ux(n) uxx(n+l) +Yuxx(n) ux(n+l)_uxx(n)_7ux(n) uxx(n) =0 (8.15)

(n+1)th stage is iterative so that

..o.=2u. .+u. .
82u _ u1,]+1 ul,] ul,]—l
2 2 (8.16)
ot k
2 u. . -2u.. +u. .
J<u 1+1, 1] 1i—1,
> = > (8.17)
0x h
R R S N N I A T N R AR I
2 =t T-var 2
k ox h
kK, du
ui,j+1_2ui,j+ui,j—1 —FC (1-Y&](ui+l,j-zui,j+ui—1,jj

Uit :B(”m,j "2 +”i—1,j)

'S du
Wh =—c’ l-y—
ere B h2C ( 'yaxj

ui,j+1 = _ui,j-l + 2(1-B) ui,j + B(ui+1,j+ui—l,jj (8.18)
(8.9) satisfy the following conditions

2
o= k= <1 for convergence of solution.
h
the boundary conditions are u(0,t) =0 = u(0,jk ) =0 forj =1,2,3
t>0

u(15,t)=-3 =u(5,;)k)=-3 forj=1,23.....n for

Jdu
( ot )tZO = vp;0SX<7.5 initial velocity
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Jdu
(W)t=0 = 0;7.5<x<15 sothat

:>ui,1=ui’O+VOk (8.19)
= i1 T %0 (8.20)
Initial displacement u (x, 0) = 0.125 sinx

= u(ih,0)=0.125sin(ih) (8.21)

Apply the quasi-linearization technique on (8.18) with (8.19), (8.20) and (8.15) we

can get the following results. Also the wave propagation is plotted with various time levels

with vo=5m/s.



NUMERICAL RESULTS

CASE-1: at y=10000
X LEVEL-1 | LEVEL-2 | LEVEL-3 | LEVEL-4 | LEVEL-5
0 |0 0 0 0 0
0.5 | 0.559928 | -0.17976 | -2.03978 | -28.8021 | -518.078
|05 1.119854 | 2.814675 | 27.12049 | 524.336
15 |05 1 1.402315 | -3.58587 | -208.491
2 |05 1 15 23278 | 37.22868
25 |05 1 15 2 0.710263
3|05 1 15 2 25
35 |05 1 15 2 25
4 |05 1 15 2 2.5
45 |05 1 15 2 2.5
5 |05 1 15 2 25
55 |05 1 15 2 25
6 |05 1 15 2 17.43236
65 |05 1 15 207353 | -140.268
7105 1 2257288 | 21.67987 | 497.0688
75 105 0.00019 | 2.01452 | -39.4301 | -851.865
8§ |0 0.999981 | 3.514522 | 41.43012 | 854.3651
85 |0 0 2075729 | -19.6799 | -494.568
9 |0 0 0 2735351 | 142.7683
95 |0 0 0 0 11493
10 |0 0 0 0 0
1050 0 0 0 0
T 0 0 0 0
1150 0 0 0 0
2 |0 0 0 0 0
1250 0 0 0 0
13 |0 0 0 0 0
1350 0 0 0 0
4 |0 0 0 0 0
1450 0 0 0 0
15 |3 3 3 3 3

Table. 8.1
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CASE-II
at ¥ =5000
X |LEVEL-1| LEVEL-2 | LEVEL-3 | LEVEL4 | LEVEL-5
0 |0 0 0 0 0
0.5 |0.559928 | 0.403166 |0.278242 |-0.63727 | -9.03406
1 |05 1.063496 | 1.537378 | 3.049896 | 12.76054
1.5 05 1 1.507861 | 1.998268 | 0.67732
2 |05 1 1.5 1.993664 | 2.468401
25 105 1 1.5 2 2.510962
3105 1 1.5 2 25
35 |05 1 1.5 2 25
4 105 1 1.5 2 25
45 105 1 1.5 2 25
5 05 1 1.5 2 25
55 |05 1 1.5 2 25
6 |05 1 1.5 2 2.408546
6.5 |05 1 1.5 2.052863 | 1.822835
7 105 1 1.434411 | 2.558264 | 9.963272
75 105 047023 |0.51342 |-0.56705 |-12.476
8 |0 0.52977 | 0.98658 | 2.567053 | 14.97635
85 |0 0 0.065589 | -0.55826 | -7.46327
9 |0 0 0 -0.05286 | 0.677164
95 |0 0 0 0 0.091954
10 |0 0 0 0 0
10.5 | 0 0 0 0 0
11 |0 0 0 0 0
1150 0 0 0 0
12 |0 0 0 0 0
1250 0 0 0 0
13 |0 0 0 0 0
1350 0 0 0 0
14 |0 0 0 0 0
145 | 0 0 0 0 0
15 |-3 3 3 3 3

Table. 8.1(b)
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CASE-III:

y =2500
X LEVEL-1(u) | LEVEL-2 | LEVEL-3 | LEVEL-4 | LEVEL-5
0 0 0 0 0 0
0.5 |0.559928 0.111702 | 0.585477 | 0.685795 | 0.688854
1 0.5 1.091675 | 0.545387 | 0.651041 | 0.877135
1.5 |05 1 1.597348 | 1.508572 | 1.378224
2 0.5 1 1.5 2.058116 | 2.53421
25 |05 1 1.5 2 2.507844
3 0.5 1 1.5 2 2.5
35 105 1 1.5 2 2.5
4 0.5 1 1.5 2 2.5
45 105 1 1.5 2 2.5
5 0.5 1 1.5 2 2.5
55 |05 1 1.5 2 2.5
6 0.5 1 1.5 2 2.434552
6.5 0.5 1 1.5 1.515122 | 1.560284
7 0.5 1 0.687793 | 1.252803 | 1.866625
75 (0.5 0.235125 | 1.344989 | 1.35211 1.250774
8 0 0.764875 | 0.155011 | 0.647888 | 1.249226
85 |0 0 0.812207 | 0.747197 | 0.633375
9 0 0 0 0.484878 | 0.939716
95 |0 0 0 0 0.065448
10 |0 0 0 0 0
10510 0 0 0 0
11 |0 0 0 0 0
11510 0 0 0 0
12 |0 0 0 0 0
12510 0 0 0 0
13 |0 0 0 0 0
1350 0 0 0 0
14 |0 0 0 0 0
14510 0 0 0 0
15 |-3 -3 -3 -3 -3

Table.8.1(c)
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Non-linear wave propogation:

0.5 -

Figure.8.1 (d)

PHYSICAL INTERPRETATION

For all acoustic parameter values ( ¥ )
1. At the lower and the higher positions of the objects the collision might be random;
obviously it indicates the inelastic collision. In other words, the loss of kinetic
energy may be sustained and converted in to equivalent sound and/or heat

dissipated in to the surroundings.

2. At the middle positions of the objects the collision may be uniform; obliviously it
indicates the elastic collision. In other wards no loss of kinetic energy is

sustained in the collision.

CONCLUSIONS
When ever an impact occurs the velocities of the two objects are changes according to
the starting compression force applied at the impact point. An impact occurs a longitudinal

sound wave is generated and it propagates in the region up to free end of the second object.
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When it reaches to the free end a reflection occurs. That is the only reason the boundary

condition at the free end is assumed as negative but small in magnitude.

The displacement in terms of the length of the impact system with respective to time

is drawn in Figure 8.1(a) -8.1(d) It gives the following implications.

1) At 7:10000 In the second level the displacement u(x,t) exhibits non-linearity at the

2)

3)

4)

5)

middle of the position of the objects and at all other time levels , no non-linearity is
observed.

At ¥/=5000 all time levels, displacement sustains with respect to the origin except at

time level 5. At end positions at time level 5 Non-linearity is observed.

At ¥=2500 all the time levels exhibiting the displacements with disturbance at end

positions (0-2 cm and 7-10 cm) and the middle position the displacement is found to
constant and rises with respective to the time level-1.

At lower and higher )/ values non-linearity is not observed clearly but it gives the
tendency. At middle Y/ value the non-linearity behavior is clearly observed at

higher time level-5.

For all acoustic parameter( /) values displacement u is observed to constant at 2

to 6 units distance with respective to time level.



126

PART-V
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CHAPTER-9

CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this Thesis in Part — I we have studied steady-state convection-diffusion problems
in one dimensional space and two dimensional space. Also we have chosen a problem
which is related to wave propagation in a non linear medium due to impact of two objects.
This problem is also having some commonality with the convection-diffusion problems i.e.
convection of molecules within the substance.

Convection-diffusion problems form a class of singular perturbation problems. The
numerical treatment of these Singular perturbation problems is far from trivial in view of the
boundary layer behavior of the solutions. There is a phenomenal change in the solution at
the boundary layer region due to the perturbation parameter which is positive in quantity but
very close to zero. The coefficient of the highest order derivative in the convection-diffusion

equation.

In Part II we studied the steady state convection- diffusion problems which are
solved by applying different numerical methods. It consists of four chapters 2, 3, 4 and 5.

In Chapter 2, we studied a computational method to solve steady state convection —
diffusion problem. In this problem an attempt is made to study the asymptotic method to
study the solution nature of the same equation. We have observed that, there is a right
boundary layer near the argument x=1.

In Chapter 3, we studied a uniformly convergent scheme for convection —diffusion
problem namely Allen-I'in developed scheme and applied to the one-dimensional
convection-diffusion problem. We compared the solution with the finite difference methods.
In this work a condition is contemplated for convergence It is found that Allen-II’in scheme
converges uniformly through out the specified domain [0,1].

Chapter 4 is devoted to the application of finite element method to solve singularly
perturbed two point boundary value problems using cubic B-splines. The basis functions
have been redefined into a new set of basis functions which vanish on the boundary where

the Dirichlet type of boundary conditions is employed. A finer mesh has been taken near and
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around & where the left boundary layer is located. The proposed Galerkin method has given
the computational results which are very much close to the analytical solutions which are
available in the literature for a fine mesh size h. The approximate solutions obtained by the
developed method are in good agreement with the exact solutions of the selected problems.

In Chapter-5 we studied numerical integration method for solving general steady-
state convection-diffusion problems The proposed method is iterative on the deviating
argument. The computed results are matching with the exact solution with reasonable
accuracy.

In Part-III we discussed a peculiar problem coined by Stynes [66], Artificial-
diffusion convection problem and two dimensional convection-diffusion problems. It consists
of two chapters, chapter 6 and 7.

Chapter 6 deals with a convection-diffusion problem in one-dimension with variable
coefficient wherein an artificial —diffusion term is present. The numerically introduced
artificial-diffusion reduces the oscillations in the boundary layer region. As a closed form
solution is not available we have solved by using Finite difference methods wherein central
difference scheme is employed. The same problem is also solved by classical Frobenious

method. These two methods have given reasonably fair results.

In chapter-7 we presented convection —diffusion problem in two- dimensional
space. Convection-diffusion problem in two-dimensional space is solved on a unit square
mesh with the prescribed boundary conditions by finite difference method where in central
difference scheme is employed. It is observed that there is a boundary layer at the specific
values of arguments

Part IV consists of a single Chapter. This chapter aims to study the Numerical study
of wave propagation in a non-linear medium due to impact. The problem studied in this part
is analogous to those studied in the previous part as the non-linear wave equation possesses
convection in nature. Non-linear equation is made linear by quasi-linearization technique.

In all the above problems, Numerical methods are used and the analytical solutions
are attained wherever possible. In the Numerical methods for majority of the problems finite
difference methods are employed. In chapter-4 we have employed finite element method in
order to get a high precision. In a nut-shell the numerical methods presented in this thesis for

solving convection-diffusion problems in differential equations have been shown to be
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accurate and capable over the conventional methods. Above all, these methods are
conceptually simple, easy to use and are readily adaptable for computer implementation with
a modest amount of problem preparation.

The problems in this thesis are solved in the steady state with Dirichlet’s boundary
conditions.  In future study it is worthwhile to study un-steady convection-diffusion
problems with Neumann (derivative) boundary conditions and mixed boundary conditions.

There are likely to be more challenging and numerically involved that what are

considered in the present thesis.
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